Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Word.docx
Скачиваний:
256
Добавлен:
17.03.2015
Размер:
302.69 Кб
Скачать

Константа химического равновесия

Количественной характеристикой химического равновесия является константа равновесия, которая может быть выражена через равновесные концентрации Сi, парциальные давления Pi или мольные доли Xi реагирующих веществ. Для некоторой реакции соответствующие константы равновесия выражаются следующим образом:

Т.о., константа равновесия есть отношение констант скорости прямой и обратной реакции. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л.

Билет № 16

Термодинамические параметры химических процессов

Термодинамические параметры - физические величины, характеризующие состояние термодинамической системы: температура, давление, внутренняя энергия, энтропия, энтальпия, энергия Гиббса.

Энтальпия, энтропия, энергия Гиббса

Энтальпия - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту. H = U + pV

Энтропия - термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS> 0

Энергия Гиббса - это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на принципиальную возможность протекания химической реакции; это термодинамический потенциал следующего вида:

Билет № 17

Электролитическая диссоциация

Электролитическая диссоциация, полный или частичный распад молекул растворенного вещества на катионы и анионы. Электролитической диссоциацией называют также распад на катионы и анионы ионных кристаллов при растворении или расплавлении. Электролитическая диссоциация, как правило, происходит в полярных растворителях.

Кислоты, основания, соли с точки зрения теории диссоциации. Основания. Название "основание" первоначально было отнесено к веществам, которые в реакциях с кислотами образуют соли. К основаниям принадлежат гидроксиды многих металлов.

Примеры: NaOH - гидроксид натрия (едкий натр), KOH - гидроксид калия (едкое кали), Ca(OH)2 - гидроксид кальция (гашёная известь). Основания, которые хорошо растворяются в воде, называются щелочами, К ним относятся гидроксиды щелочных и щелочно-земельных металлов. С точки зрения теории электролитической диссоциации основания - это вещества, диссоциирующие в водном растворе с образованием анионов одного вида - гидроксид - ионов ОН-. В общем виде уравнение электролитической диссоциации основания имеет вид: Основание -> Катион основания + Гидроксид – ион. Кислоты. Кислоты исторически получили своё название из-за кислого вкуса водных растворов таких веществ, как хлороводород или уксусная кислота. С точки зрения теории электролитической диссоциации кислоты - это вещества, диссоциирующие в водном растворе с образованием катионов одного вида - катионов водорода Н+.

В общем виде уравнение электролитической диссоциации кислоты имеет вид: Кислота -> Катион водорода + Анион кислотного остатка.

Соли. С точки зрения теории электролитической реакции соли - это вещества, которые в водном растворе диссоциируют с образованием катионов основания и анионов кислотного остатка. В общем виде уравнение электролитической диссоциации солей имеет следующий вид: Соль -> Катион основания + Анион кислотного остатка

Билет № 18

Сильные и слабые электролиты

Сильные и слабые электролиты. В зависимости от степени диссоциации различают электролиты сильные и слабые. Электролиты со степенью диссоциации больше 30% обычно называют сильными, со степенью диссоциации от 3 до 30% — средними, менее 3% — слабыми электролитами.

К сильным электролитам относятся почти все соли, некоторые кислоты (НСl, HBr, HI, НNО3, НсlO4, Н2SO4(разб.)) и некоторые основания (LiОН, NaOH, КОН, Са(ОН)2, Sr(OH)2, Ва(ОН)2). К слабым электролитам относится большинство кислот (особенно органических) и оснований.

Степень диссоциации, константа диссоциации

Степенью диссоциации называется отношение числа молекул, распавшихся на ионы (N'), к общему числу растворенных молекул (N):

Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.

Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:

A K  A + K+.

Поскольку диссоциация является обратимым равновесным процессом, то к этой реакции применим закон действующих масс, и можно определить константу равновесия как

Билет № 19

Диссоциация воды Реакции, применяемые в аналитической химии, протекают, как правило, в водных растворах. Вода является одним из наименее диссоциированных веществ. Чистая вода очень плохо проводит электрический ток. Однако вода все же диссоциирует на водородные и гидроксидные ионы:

При температуре 22 °С в каждом литре воды 1 • 10~7 моля диссоциировано на ионы. Ионное произведение воды Произведение концентраций ионов Н+ и ОН- величина постоянная:[] [] = const. Если изменить один из сомножителей, то обязательно должен измениться и другой, для того, чтобы произведение осталось постоянным. Если, например, к чистой воде добавить столько кислоты, чтобы концентрация ионов водорода увеличилась в 100 раз, то, чтобы произведение [] [] осталось равным 1 • 10"14, концентрация гидроксид-ионов должна понизиться в 100 раз. Следовательно, если увеличить концентрацию ионов Н+, то концентрация ионов ОН- уменьшится во столько же раз, и наоборот.

Водородный показатель Водородный показатель, pH- мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр:

Билет № 20.

Гидролиз солей.

Гидролиз солей - это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита.

Если рассматривать соль как продукт нейтрализации основания кислотой, то можно разделить соли на четыре группы, для каждой из которых гидролиз будет протекать по-своему.

Соль, образованная сильным основанием и сильной кислотой (KBrNaClNaNO3), гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется. Реакция среды остается нейтральной.

В соли, образованной слабым основанием и сильной кислотой (FeCl2, NH4ClAl2(SO4)3MgSO4) гидролизу подвергается катион:

FeCl2 + HOH =>Fe(OH)Cl + HCl  Fe2+ + 2Cl- + H+ + OH- => FeOH+ + 2Cl- + Н+

В результате гидролиза образуется слабый электролит, ион H и другие ионы. рН раствора < 7 ( раствор приобретает кислую реакцию).

Соль, образованная сильным основанием и слабой кислотой (КClOK2SiO3Na2CO3CH3COONa) подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид ион и другие ионы.

K2SiO3 + НОH =>KHSiO3 + KОН  2K+SiO32- + Н+ ОH- => НSiO3- + 2K+ + ОН-

рН таких растворов > 7 ( раствор приобретает щелочную реакцию).

Соль, образованная слабым основанием и слабой кислотой ( СН3СООNН4(NН4)2СО3Al2S3), гидролизуется и по катиону, и по аниону. В результате образуется малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания. Мерой силы кислоты и основания является константа диссоциации соответствующего реактива.

Реакция среды этих растворов может быть нейтральной, слабокислой или слабощелочной:

Аl2S3 + 6HOH =>2Аl(ОН)3 + 3Н2S  2Al3+ + 3S2- + 6H+ + 6OH- =>2Аl(ОН)3 + 6Н+ S2-  рН =7

Гидролиз многокислотных солей и многоосновных кислот проходит ступенчато. Например, гидролиз хлорида железа (II) включает две ступени:

1-ая ступень FeCl2 + HOH =>Fe(OH)Cl + HCl  Fe2+ + 2Cl+ H+ + OH- =>Fe(OH)+ 2Cl+ H

2-ая ступень Fe(OH)Cl + HOH =>Fe(OH)2 + HCl  Fe(OH)+ + Cl- + H+ + OH- =>Fe(ОН)2 + Н+ Cl-

Гидролиз - процесс обратимый. Повышение концентрации ионов водорода и гидроксид-ионов препятствует протеканию реакции до конца. Параллельно с гидролизом проходит реакция нейтрализации, когда образующееся слабое основание (Мg(ОН)2Fe(ОН)2 ) взаимодействует с сильной кислотой, а образующаяся слабая кислота ( СН3СООНН2СО3 ) - со щелочью.

Гидролиз протекает необратимо, если в результате реакции образуется нерастворимое основание и (или) летучая кислота:

Al2S3 + 6H2O =>2Al(OH)3 + 3H2S

Билет №21

Гальванический элемент. ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ – источник электрического тока, в котором вследствие электрохимической реакции выделяется электрическая энергия. Состоит из отрицательных (чаще из цинка) и положительных (из меди, угля или окиси металла) электродов, погруженных в жидкий или пастообразный раствор электролита.

Между электродом и электролитом всегда возникает некоторая разность потенциалов, зависящая от электрода и состава электролита. Появление электродного потенциала объясняется тем, что вещество электрода под воздействием химической энергии растворяется в электролите и положительные ионы переходят в электролит.

Преобладание положительных и отрицательных зарядов на электроде в прилегающем к нему пограничном слое вызывает появление двойного электрического слоя и электрического поля на границе электрода.

Билет №22.

Ряд напряжений металлов

Li, K, Ba, Ca, Na, Mg, Al, Mn, Cr, Zn, Fe, Co, Sn, Pb, H, Cu, Hg, Ag, Au

>>  Ослабление восстановительных свойств, ослабление активности металлов  >>>>>

<<<  Ослабление окислительных свойства,  усиление активности металлов         <<<<<

В частности, пользуясь злектрохимическим рядом напряжения металлов, можно определить, какие металлы вытесняют другие из растворов их солей (Более активные, - те, которые левее, вытесняют менее активные). Какие металлы будут реагировать с разбавленным раствором серной кислоты, соляной кислотой и некоторыми другими. (Это металлы, стоящие в ряду напряжения до Н)

Ряд напряжений используется на практике для сравнительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе:

Металлы, стоящие левее, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu2+ → Zn2+ + Cu возможно только в прямом направлении. Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) — и при взаимодействии с водой. Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.

При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.