Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
01.04.2024
Размер:
2.49 Mб
Скачать

\570  

Page 6 of 7

R. S. Daniel et al.

 

 

 

Fig. 11  E-plane and H-plane radiation pattern at a 3.73 GHz, b 5.1 GHz

5 Conclusion

The proposed antenna is developed on 30 × 30 × 0.8 ­mm3 FR-4 Substrate and tested. The measured radiation characteristics are endorsed by simulations. The ELC resonator in the ring monopole antenna creates dual-band characteristics for WiMAX and WLAN applications. The proposed antenna demonstrates good radiation pattern for both E-plane and H-plane in the dual bands. The band characteristics of the proposed ELC metamaterial element are analysed by the classical waveguide theory to describe the negative permeability property of ELC metamaterial at 4.3 GHz due to stop band behaviour. The pass band characteristics are noticed for frequencies of 3.45 and 5 GHz. This is perceived that pass band exhibits where the antenna has revealed a new resonance frequency in the return loss characteristics.

Fig. 12  Gain plot of the proposed antenna

1 3

Dual-band monopole antenna loaded with ELC metamaterial resonator for WiMAX and WLAN…

Page 7 of 7  570

 

 

Fig. 13  Radiation efficiency of the proposed antenna

References

\1.\ R. Pandeeswari, S. Raghavan, Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching. Microw. Opt. Technol. Lett. 56(10), 2388–2392 (2014)

\2.\ O.E. Mrabet, M. Aznabet, A compact split ring resonator antenna for wireless communication systems. Progress Electromagn. Res. Lett. 36, 201–207 (2013)

\3.\ R. Samson Daniel, R. Pandeeswari, S. Raghavan, Multiband monopole antenna loaded with complementary split ring resonator and C-shaped slots. AEU Int. J. Electron. C. 75, 8–14 (2017)

\4.\ R. Samson Daniel, R. Pandeeswari, S. Raghavan, Offset-fed complementary split ring resonators loaded monopole antenna for multiband operations. AEU Int. J. Electron. C 78, 72–78 (2017)

\5.\ R. Pandeeswari, S. Raghavan, Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement. Microw. Opt. Technol. Lett. 57(2), 292–296 (2015)

\6.\ M. Lu, J.Y. Chin, R. Liu, T.J. Cui, A microstrip phase shifter using complementary metamaterials, in 2008 International Conference on Microwave and Millimeter Wave Technology, vol. 2, no. c, pp. 1569–1571 (2008)

\7.\ B.D. Bala, M.K.A. Rahim, N.A. Murad, Small electric metamaterial antenna based on coupled electric filed resonator with enhanced bandwidth. Electron. Lett. 50(3), 138–139 (2014)

\8.\ VahidAmiri HosseinRajabloo, Kooshki, HomayoonOraizi, Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application. AEU Int J Electron C 73, 144–149 (2017)

\9.\ B.D. Bala, M.K.A. Rahim, N.A. Murad, Complementary elec-

tric-LC resonator antenna for WLAN applications. Appl. Phys. A 50(3), 138–139 (2014)

\10.\ K. Li, C. Zhu, L. Li, Y.-M. Cai, C.-H. Liang, Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antennas Wirel. Propag. Lett. 12, 678–681 (2013)

\11.\ C. Withawat Withayachumnankul, D. Fumeaux, Abbott, Planar Array of Electric-LC Resonators with Broadband Tunability. IEEE Antennas Wirel. Propag. Lett. 10, 577–580 (2011)

\12.\ S.N. Abdallah Dhouibi, A. Burokur, de Lustrac, Alain Priou1, Comparison of compact electric-LC resonators for negative permittivity metamaterials. Microw. Opt. Technol. Lett. 54(10), 2287–2295 (2012)

\13.\ R. Boopathi Rani, S.K. Pandey, ELC metamaterial based CPWfed printed dual-band antenna. Microw. Opt. Technol. Lett. 59(2), 304–307 (2017)

\14.\ D. Schurig, J.J. Mock, D.R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006)

\15.\ S. Immaculate Rosaline, S. Raghavan, Metamaterial inspired patch antenna for WLAN application. International Conference on Signal Processing, Communication and Networking (2015)

1 3