Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
1
Добавлен:
01.04.2024
Размер:
5.01 Mб
Скачать

Other important process parameters to be finetuned are the compensation factors that account for the shrinkage of the parts due to thermal stresses and the beam offset that compensates for the enlargement of the effective spot size due to thermal diffusion. Similar considerations hold for polymer-based AM processes, like SLA and FDM. In sum we anticipate that steady improvements in AM processes, materials, and postprocessings pave the way for these technologies to become widely adopted in the production of RF components, including filters, for a variety of application domains (e.g., satellite communication, automotive radar, and the Internet of Things), for which the capability of manufacturing light and customizable components makes AM technologies very attractive.

References

[1]Standard Terminology for Additive Manufacturing Technologies, ASTM F2792-12a, 2012.

[2]T. Wohlers, “Additive manufacturing and 3D printing state of the industry,” Wohlers Associates Inc., Fort Collins, CO, 2018. [Online]. Available: https://wohlersassociates.com/2018contents.htm

[3]L. Hao, D. Raymond, G. Strano, and S. Dadbakhsh, “Enhancing the sustainability of additive manufacturing,” in Proc. 5th Int. Conf. Responsive Manufacturing – Green Manufacturing (ICRM 2010), Ningbo, China, 2010, pp. 390–395. doi: 10.1049/cp.2010.0462.

[4]D. Manfredi et al., “Additive manufacturing of Al alloys and aluminium matrix composites (AMCs),” in Light Metal Alloys Applications, W. A. Monteiro, Ed. Rijeka, Croatia: InTech, 2014, pp. 3–34.

[5]N. Guo and M. C. Leu, “Additive manufacturing: Technology, applications and research needs,” Front. Mech. Eng., vol. 8, no. 3, pp. 215–243, Sept. 2013. doi: 10.1007/s11465-013-0248-8.

[6]I. Gibson, B. Stucker, and D. W. Rosen, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Berlin: Springer-Verlag, 2010.

[7]F. Calignano et al., “Overview on additive manufacturing technologies,” Proc. IEEE, vol. 105, no. 4, pp. 593–612, Jan. 2017. doi: 10.1109/ JPROC.2016.2625098.

[8]C. Hinczewski, S. Corbel, and T. Chartier, “Ceramic suspensions suitable for stereolithography,” J. Eur. Ceram. Soc., vol. 18, no. 6, pp. 583–590, 1998. doi: 10.1016/S0955-2219(97)00186-6.

[9]P. Booth, J. Gilmore, E. V. Lluch, and M. Harvey, “Enhancements to satellite feed chain performance, testing and lead-times using additive manufacturing,” in Proc. 10th European Conf. Antennas and Propagation (EuCAP), Davos, Switzerland, 2016, pp. 1–5. doi: 10.1109/EuCAP.2016.7481882.

[10]G. Addamo et al., “3-D Printing of high-performance feed horns from Kuto V-bands,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 11, pp. 2036–2040, Nov. 2018. doi: 10.1109/LAWP.2018.2859828.

[11]T. Chio, G. Huang, and S. Zhou, “Application of direct metal laser sintering to waveguide-based passive microwave components, antennas, and antenna arrays,” Proc. IEEE, vol. 105, no. 4, pp. 632–644, Apr. 2017. doi: 10.1109/JPROC.2016.2617870.

[12]M. Kilian, C. Hartwanger, M. Schneider, and M. Hatzenbichler, “Waveguide components for space applications manufactured by additive manufacturing technology,” IET Microw., Antennas Propag., vol. 11, no. 14, pp. 1949–1954, Nov. 2017. doi: 10.1049/iet-map.2016.0984.

[13]G. Addamo et al., “Additive manufacturing of Ka-band dualpolarization waveguide components,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 8, pp. 3589–3596, Aug. 2018. doi: 10.1109/ TMTT.2018.2854187.

[14]V. Tornielli di Crestvolant, P. Martin Iglesias, and M. J. Lancaster, “Advanced Butler matrices with integrated bandpass filter functions,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 10, pp. 3433–3444, Oct. 2015. doi: 10.1109/TMTT.2015.2460739.

44

[15]J. A. Lorente, M. M. Mendoza, A. Z. Petersson, L. Pambaguian, A.

A.Melcon, and C. Ernst, “Single part microwave filters made from selective laser melting,” in Proc. European Microwave Conf. (EuMC), Rome, Italy, 2009, pp. 1421–1424. doi: 10.23919/EUMC.2009.5296127.

[16]P. Booth and E. V. Lluch, “Enhancing the performance of waveguide filters using additive manufacturing,” Proc. IEEE, vol. 105, no. 4, pp. 613–619, Apr. 2017. doi: 10.1109/JPROC.2016.2616494.

[17]P. A. Booth and E. Valles Lluch, “Realising advanced waveguide bandpass filters using additive manufacturing,” IET Microw. Antennas Propag., vol. 11, no. 14, pp. 1943–1948, Nov. 2017. doi: 10.1049/ iet-map.2017.0170.

[18]S. W. Sattler, F. Gentili, R. Teschl, and W. Bösch, “Direct metal printed 4th order stepped impedance filter in the C/X band,” in

Proc. IEEE/MTT-S Int. Microw. Symp. (IMS), Philadelphia, June 2018, pp. 145–148. doi: 10.1109/MWSYM.2018.8439567.

[19]O. A. Peverini et al., “Manufacturing of waveguide components for SatCom through selective laser melting,” in Proc. 11th European Conf. Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 563–566. doi: 10.23919/EuCAP.2017.7928301.

[20]O. A. Peverini et al., “Additive manufacturing of Ku/K-band waveguide filters: A comparative analysis among selective-laser melting­

and stereo-lithography,” IET Microw., Antennas Propag., vol. 11, no. 14, pp. 1936–1942, Nov. 2017. doi: 10.1049/iet-map.2017.0151.

[21]O. A. Peverini et al., “Enhanced topology of E-plane resonators for high-power satellite applications,” IEEE Trans. Microw. Theory­ Techn., vol. 63, no. 10, pp. 3361–3373, Oct. 2015. doi: 10.1109/TMTT. 2015.2462839.

[22]O. A. Peverini et al., “Selective laser melting manufacturing of microwave waveguide devices,” Proc. IEEE, vol. 105, no. 4, pp. 620– 631, Apr. 2017. doi: 10.1109/JPROC.2016.2620148.

[23]F. Calignano, D. Manfredi, E. P. Ambrosio, L. Iuliano, and P. Fino, “Influence of process parameters on surface roughness of aluminum parts produced by DMLS,” Int. J. Adv. Manuf. Techn., vol. 67, pp. 2743–2751, Aug. 2013. doi: 10.1007/s00170-012-4688-9.

[24]B. Zhang and H. Zirath, “3D Printed iris bandpass filters for mil- limetre-wave applications,” Electron. Lett., vol. 51, no. 22, pp. 1791– 1793, Oct. 2015. doi: 10.1049/el.2015.2342.

[25]M. Salek et al., “W-Band waveguide bandpass filters fabricated by micro laser sintering,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 66, no. 1, pp. 61–65, Jan. 2019. doi: 10.1109/TCSII.2018.2824898.

[26]O. A. Peverini et al., “Integration of an H-plane bend, a twist, and a filter in Ku/K-band through additive manufacturing,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2210–2219, May 2018. doi: 10.1109/TMTT.2018.2809505.

[27]J. R. Montejo-Garai, I. O. Saracho-Pantoja, C. A. Leal-Sevillano, J.

A.Ruiz-Cruz, and J. M. Rebollar, “Design of microwave waveguide devices for space and ground application implemented by additive manufacturing,” in Proc. Int. Conf. Electromagnetics Advanced Applications (ICEAA), Turin, Italy, 2015, pp. 325–328. doi: 10.1109/ ICEAA.2015.7297128.

[28]A. Périgaud, S. Bila, O. Tantot, N. Delhote, and S. Verdeyme, “3D printing of microwave passive components by different additive manufacturing technologies,” in Proc. IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes RF and THz Applications (IMWS-AMP), Chengdu, China, 2016, pp. 1–4. doi: 10.1109/IMWS-AMP.2016.7588328.

[29]U. Jankovic, N. Mohottige, D. Budimir, and O. Glubokov, “Hybrid manufactured waveguide resonators and filters for mm-wave applications,” in Proc. IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes RF and THz Applications (IMWSAMP), Pavia, Italy, 2017, doi: 10.1109/IMWS-AMP.2017.8247360.

[30]E. Massoni et al., “3D printing and metalization methodology for high dielectric resonator waveguide microwave filters,” in Proc. IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes RF and THz Applications (IMWS-AMP), Pavia, Italy, 2017, pp. 1–3. doi: 10.1109/IMWS-AMP.2017.8247417.

[31]M. Bozzi, C. Tomassoni, L. Perregrini, R. Bahr, and M. Tentzeris, “Additive manufacturing of substrate integrated waveguide components,” in Proc. IEEE MTT-S Int. Microwave Workshop

June 2020

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 28,2020 at 09:46:09 UTC from IEEE Xplore. Restrictions apply.

Series on Advanced Materials and Processes RF and THz Applications (IMWS-AMP), Chengdu, China, 2016, pp. 1–4. doi: 10.1109/IMWSAMP.2016.7588329.

[32]C. Tomassoni, R. Bahr, M. Tentzeris, M. Bozzi, and L. Perregrini, “3D printed substrate integrated waveguide filters with locally controlled dielectric permittivity,” in Proc. 46th European Microwave Conf. (EuMC), London, 2016, pp. 253–256. doi: 10.1109/ EuMC.2016.7824326.

[33]C. Tomassoni, M. Bozzi, M. Dionigi, G. Venanzoni, L. Perregrini, and R. Sorrentino, “Additive manufacturing of microwave components: Different approaches and methodologies,” in Proc. Int. Conf. Electromagnetics Advanced Applications (ICEAA), Verona, Italy, Sept. 11–15, 2017, pp. 848–851. doi: 10.1109/ICEAA.2017.8065384.

[34]B. Liu, X. Gong, and W. J. Chappell, “Layer-by-layer polymer stereolithography fabrication for three-dimensional RF components,” in Proc. IEEE MTT-S Int. Microwave Symp. Dig., Fort Worth, TX, 2004,

pp.481–484. doi: 10.1109/MWSYM.2004.1336017.

[35]X. Gong, B. Liu, L. P. B. Katehi, and W. J. Chappell, “Laser-based polymer stereolithography of vertically integrated narrow bandpass filters operating in K band,” in Proc. IEEE MTT-S Int. Microwave Symp. Dig., Fort Worth, TX, 2004, pp. 425–428. doi: 10.1109/ MWSYM.2004.1336000.

[36]J. Maas, B. Liu, S. Hajela, Y. Huang, X. Gong, and W. J. Chappell, “Laser-based layer-by-layer polymer stereolithography for highfrequency applications,” Proc. IEEE, vol. 105, no. 4, pp. 645–654, Apr. 2017. doi: 10.1109/JPROC.2016.2629179.

[37]G. Venanzoni, M. Dionigi, C. Tomassoni, D. Eleonori, and R. Sorrentino, “3D printing of X band waveguide resonators and filters,” in Proc. 32nd General Assembly and Scientific Symp. Int. Union Radio Science (URSI GASS), Montreal, 2017, pp. 1–2. doi: 10.23919/URSIGASS.2017.8105407.

[38]M. D’Auria et al., “3-D printed metal-pipe rectangular waveguides,” IEEE Trans. Compon. Packag. Manuf. Technol, vol. 5, no. 9,

pp.1339–1349, Sept. 2015. doi: 10.1109/TCPMT.2015.2462130.

[39]X. Shang et al., “W-band waveguide filters fabricated by laser micromachining and 3-D printing,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 8, pp. 2572–2580, Aug. 2016. doi: 10.1109/ TMTT.2016.2574839.

[40]F. Cai, W. Tanveer Khan, and J. Papapolymerou, “A low loss X-band filter using 3-D polyjet technology,” in Proc. IEEE MTT- S Int. Microwave Symp., Phoenix, AZ, 2015, pp. 1–4. doi: 10.1109/ MWSYM.2015.7166895.

[41]K. Y. Park, M. I. M. Ghazali, N. Wiwatcharagoses, and P. Chahal, “Thick 3D printed RF components: Transmission lines and bandpass filters,” in Proc. IEEE 68th Electronic Components and Technology Conf. (ECTC), San Diego, CA, 2018, pp. 2186–2191. doi: 10.1109/ ECTC.2018.00328.

[42]B. Al-Juboori et al., “Lightweight and low-loss 3-D printed milli- meter-wave bandpass filter based on gap-waveguide,” IEEE Access, vol. 7, pp. 2624–2632, 2019. doi: 10.1109/ACCESS.2018.2886210.

[43]M. T. Craton, J. Sorocki, I. Piekarz, S. Gruszczynski, K. Wincza, and J. Papapolymerou, “Realization of fully 3D printed W-band bandpass filters using Aerosol jet printing technology,” in Proc. 48th European Microwave Conf. (EuMC), Madrid, Spain, 2018, pp. 1013–1016. doi: 10.23919/EuMC.2018.8541416.

[44]M. Dionigi, C. Tomassoni, G. Venanzoni, and R. Sorrentino, “Simple high-performance metal-plating procedure for stereolithographically 3-D-printed waveguide components,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 11, pp. 953–955, Nov. 2017. doi: 10.1109/LMWC.2017.2750090.

[45]C. Guo, X. Shang, M. J. Lancaster, and J. Xu, “A 3-D printed lightweight X-band waveguide filter based on spherical resonators,”

IEEE Microw. Wireless Compon. Lett., vol. 25, no. 7, pp. 442–444, July 2015. doi: 10.1109/LMWC.2015.2427653.

[46]C. Guo, X. Shang, J. Li, M. J. Lancaster, and J. Xu, “3-D printed lightweight microwave waveguide devices,” in Proc. IEEE 5th AsiaPacific Conf. Antennas and Propagation (APCAP), Kaohsiung, Taiwan, 2016, pp. 47–48. doi: 10.1109/APCAP.2016.7843092.

[47]C. Guo, X. Shang, J. Li, F. Zhang, M. J. Lancaster, and J. Xu, “A lightweight 3-D printed X-band bandpass filter based on spherical

dual-mode resonators,” in IEEE Microw. Wireless Compon. Lett., vol. 26, no. 8, pp. 568–570, Aug. 2016. doi: 10.1109/LMWC.2016.2587838.

[48]Y. Li, J. Li, M. Zhang, H. Wang, J. Xu, and S. Xiao, “A monolithic stereolithography 3-D printed Ka-band spherical resonator bandpass filter,” in Proc. IEEE Radio and Wireless Symp. (RWS), Anaheim, CA, 2018, pp. 56–59. doi: 10.1109/RWS.2018.8304945.

[49]J. Li, C. Guo, L. Mao, J. Xiang, G. Huang, and T. Yuan, “Monolithically 3-D printed hemispherical resonator waveguide filters with improved out-of-band rejections,” IEEE Access, vol. 6, pp. 57,030– 57,048, Oct. 2018. doi: 10.1109/ACCESS.2018.2872696.

[50]X. Shang, J. Li, C. Guo, M. J. Lancaster, and J. Xu, “3-D printed filter based on helical resonators with variable width,” in Proc. IEEE MTT-S Int. Microwave Symp. (IMS), Honololu, HI, 2017, pp. 1587– 1590. doi: 10.1109/MWSYM.2017.8058936.

[51]A. Perigaud, O. Tantot, N. Delhote, S. Bila, S. Verdeyme, and D. Baillargeat, “Continuously tunable filter made by additive manufacturing using a 3D spiral ribbon,” in Proc. IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes RF and THz Applications (IMWS-AMP), Pavia, Italy, 2017, pp. 1–3. doi: 10.1109/IMWS-AMP.2017.8247372.

[52]G. Venanzoni, C. Tomassoni, M. Dionigi, and R. Sorrentino, “Stereolitographic 3D printing of compact quasi-elliptical filters,” in

Proc. IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP 2017), Pavia, Italy, 2017, pp. 1–3. doi: 10.1109/IMWS-AMP.2017.8247388.

[53]C. Tomassoni, G. Venanzoni, M. Dionigi, and R. Sorrentino, “Compact doublet structure for quasi-elliptical filters using stereolitographic 3D printing,” in Proc. 47th European Microwave Conf. (EuMC), Nuremberg, Germany, 2017, pp. 993–996. doi: 10.23919/EuMC.2017.8231013.

[54]C. Tomassoni, G. Venanzoni, M. Dionigi, and R. Sorrentino, “Compact quasi-elliptic filters with mushroom-shaped resonators manufactured with 3-D printer,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 8, pp. 3579–3588, Aug. 2018. doi: 10.1109/TMTT

.2018.2849067.

[55]G. Venanzoni, M. Dionigi, C. Tomassoni, and R. Sorrentino, “3-D- printed quasi-elliptical evanescent mode filter using mixed electromagnetic coupling,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 6, pp. 497–499, June 2018. doi: 10.1109/LMWC.2018.2829627.

[56]C. Tomassoni, G. Venanzoni, M. Dionigi, and R. Sorrentino, “Additive manufacturing of a very compact doublet structure with asymmetric filtering function,” in Proc. IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes RF and THz Applications (IMWS-AMP 2018), Ann Arbor, MI, 2018, pp. 1–3. doi: 10.1109/IMWS-AMP.2018.8457127.

[57]C. Tomassoni, G. Venanzoni, M. Dionigi, and R. Sorrentino, “A very compact 3D-printed doublet structure based on a double iris and a pair of slanting rods,” in Proc. IEEE/MTT-S Int. Microwave Symp. (IMS), Philadelphia, 2018, pp. 1103–1105. doi: 10.1109/ MWSYM.2018.8439368.

[58]G. Venanzoni, M. Dionigi, C. Tomassoni, and R. Sorrentino, “Design of a compact 3D printed coaxial filter,” in 48th European Microwave Conf., Madrid, Spain, 2018, pp. 280–283. doi: 10.23919/ EuMC.2018.8541590.

[59]C. Carceller, F. Gentili, D. Reichartzeder, W. Bösch, and M. Schwentenwein, “Development of monoblock TM dielectric resonator filters with additive manufacturing,” IET Microw. Antennas Propag., vol. 11, no. 14, pp. 1992–1996, Nov. 2017. doi: 10.1049/iet-map

.2016.1051.

[60]A. Périgaud et al., “Continuously tuned Ku-band cavity filter based on dielectric perturbers made by ceramic additive manufacturing for space applications,” Proc. IEEE, vol. 105, no. 4, pp. 677– 687, Apr. 2017. doi; 10.1109/JPROC.2017.2663104.

[61]M. Dressler et al., “Preparation and properties of 3D screen-print- ed RF components,” in Proc. IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes RF and THz Applications (IMWS-AMP), Bochum, Germany, 2019, pp. 34-36. doi: 10.1109/ IMWS-AMP.2019.8880065.

June 2020

45

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 28,2020 at 09:46:09 UTC from IEEE Xplore. Restrictions apply.