Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3 курс / Фармакология / Интеллектуальные_липидные_наноконтейнеры_в_адресной_доставке_лекарственных

.pdf
Скачиваний:
1
Добавлен:
24.03.2024
Размер:
24.29 Mб
Скачать

Литература

1.Muller R.H., Keck C.M. (2004) Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. J.Biotechnol., 113, 151-170.

2.Prokop A., Davidson J.M. (2008) Nanovehicular intracellular delivery systems. J.Pharm.Sci., 97, 3518-3590.

3.Vicent M.J., Duncan R. (2006) Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol., 24, 39-47.

4.Jia H., Titmuss S. (2009) Polymer-functionalized nanoparticles: from stealth viruses to biocompatible quantum dots. Nanomedicine.(Lond), 4, 951-966.

5.Lee C.C., MacKay J.A., Frechet J.M., Szoka F.C. (2005) Designing dendrimers for biological applications. Nat.Biotechnol., 23, 1517-1526.

6.Bharali D.J., Khalil M., Gurbuz M., Simone T.M., Mousa S.A. (2009) Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int.J.Nanomedicine., 4, 1-7.

7.Paciotti G.F., Myer L., Weinreich D., Goia D., Pavel N., McLaughlin R.E., Tamarkin L. (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 11, 169-183.

8.Boisselier E., Astruc D. (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem.Soc.Rev., 38, 1759-1782.

9.Sperling R.A., Rivera G.P., Zhang F., Zanella M., Parak W.J. (2008) Biological applications of gold nanoparticles. Chem.Soc.Rev., 37, 1896-1908.

10.Akerman M.E., Chan W.C., Laakkonen P., Bhatia S.N., Ruoslahti E. (2002) Nanocrystal targeting in vivo. Proc.Natl.Acad.Sci.U.S.A, 99, 12617-12621.

11.Biju V., Itoh T., Anas A., Sujith A., Ishikawa M. (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications.

Anal.Bioanal.Chem., 391, 2469-2495.

12.Chen W., Zhang J.Z., Joly A.G. (2004) Optical properties and potential applications of doped semiconductor nanoparticles. J.Nanosci.Nanotechnol., 4, 919-947.

13.Islam T., Josephson L. (2009) Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark., 5, 99-107.

14.Lin M.M., Kim d.K., El Haj A.J., Dobson J. (2008) Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans.Nanobioscience., 7, 298-305.

15.Goyal P., Goyal K., Vijaya Kumar S.G., Singh A., Katare O.P., Mishra D.N. (2005) Liposomal drug delivery systems – clinical applicat ions. Acta Pharm., 55, 1-25.

16.Immordino M.L., Dosio F., Cattel L. (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int.J.Nanomedicine., 1, 297-315.

17.Uchida T., Taneichi M. (2008) Clinical application of surface-linked liposomal antigens.

Mini.Rev.Med.Chem., 8, 184-192.

18.Griffiths W.J., Wang Y. (2009) Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem.Soc.Rev., 38, 1882-1896.

19.Gross R.W., Han X. (2009) Shotgun lipidomics of neutral lipids as an enabling technology for elucidation of lipid-related diseases. Am.J.Physiol Endocrinol.Metab, 297, E297-E303.

20.Hu C., van der H.R., Wang M., van der G.J., Hankemeier T., Xu G. (2009) Analytical strategies in lipidomics and applications in disease biomarker discovery. J.Chromatogr.B Analyt.Technol.Biomed.Life Sci., 877, 2836-2846.

21.Stahlman M., Ejsing C.S., Tarasov K., Perman J., Boren J., Ekroos K. (2009) Highthroughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry.

J.Chromatogr.B Analyt.Technol.Biomed.Life Sci., 877, 2664-2672.

22.Cheung G.W., Kokorovic A., Lam T.K. (2009) Upper intestinal lipids regulate energy and glucose homeostasis. Cell Mol.Life Sci., 66, 3023-3027.

210

23.Florent-Bechard S., Desbene C., Garcia P., Allouche A., Youssef I., Escanye M.C., Koziel V., Hanse M., Malaplate-Armand C., Stenger C., Kriem B., Yen-Potin F.T., Olivier J.L., Pillot T., Oster T. (2009) The essential role of lipids in Alzheimer's disease. Biochimie, 91, 804-809.

24.Huwiler A., Pfeilschifter J. (2009) Lipids as targets for novel anti-inflammatory therapies. Pharmacol.Ther., 124, 96-112.

25.Bradley N., Manktelow B.N., Potter J.F. (2009) Interventions in the management of serum lipids for preventing stroke recurrence. Stroke e622-e623.

26.Nordestgaard B.G., Zacho J. (2009) Lipids, atherosclerosis and CVD risk: is CRP an innocent bystander? Nutr.Metab Cardiovasc.Dis., 19, 521-524.

27.Szendroedi J., Roden M. (2009) Ectopic lipids and organ function. Curr.Opin.Lipidol., 20, 50-56.

28.Allayee H., Roth N., Hodis H.N. (2009) Polyunsaturated fatty acids and cardiovascular disease: implications for nutrigenetics. J.Nutrigenet.Nutrigenomics., 2, 140-148.

29.Lavie C.J., Milani R.V., Mehra M.R., Ventura H.O. (2009) Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J.Am.Coll.Cardiol., 54, 585-594.

30.Teegala S.M., Willett W.C., Mozaffarian D. (2009) Consumption and health effects of trans fatty acids: a review. J.AOAC Int., 92, 1250-1257.

31.Vrablik M., Prusikova M., Snejdrlova M., Zlatohlavek L. (2009) Omega-3 fatty acids and cardiovascular disease risk: do we understand the relationship? Physiol Res., 58 Suppl 1, S19-S26.

32.White B. (2009) Dietary fatty acids. Am.Fam.Physician, 80, 345-350.

33.Fahy E., Subramaniam S., Brown H.A., Glass C.K., Merrill A.H., Jr., Murphy R.C., Raetz C.R., Russell D.W., Seyama Y., Shaw W., Shimizu T., Spener F., van Meer G., VanNieuwenhze M.S., White S.H., Witztum J.L., Dennis E.A. (2005) A comprehensive classification system for lipids. J.Lipid Res., 46, 839-861.

34.Kyte J. (2003) The basis of the hydrophobic effect. Biophys.Chem., 100, 193-203.

35.Soda K. (1993) Structural and thermodynamic aspects of the hydrophobic effect.

Adv.Biophys., 29, 1-54.

36.Cevc G. (1991) Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae. Biochim.Biophys.Acta, 1062, 59-69.

37.Quinn P.J. (1985) A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology, 22, 128-146.

38.Антонов В.Ф., Смирнова Е.Ю., Шевченко Е.П.: (1992) "Липидные мембраны при фазовых превращениях" Москва: Наука.

39.Харакоз Д.П. (2001) О возможной физиологической роли фазового перехода "жидкое-твердое" в биологических мембранах . Успехи Биол.Наук, 41, 333-264.

40.Lewis R.N., Mannock D.A., McElhaney R.N., (1997) Membrane lipid molecular structure and polymorphism. "Lipid polymorphism and membrane properties" Epand R.M. San Diego: Academic Press; 25-102.

41.Seddon J.M., Templer R.H., (1995) Polymorphism of lipid-water systems. "Handbook of Biological Physics" Lipowsky R., Sackmann E. Amsterdam: Elsevier Science; 97-160.

42.Seddon J.M., Cevc G., (1993) Lipid polymorphism: structure and stability of lyotropic mesophases of phospholipids. "Phospholipids handbook" Cevc G. New York: Marcel Dekker, Inc.; 403-454.

43.Tresset G. (2009) The multiple faces of self-assembled lipidic systems. PMC Biophys., 2, 3-27.

44.McIntosh T.J. (1996) Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine. Chem.Phys.Lipids, 81, 117-131.

45.Koynova R., Caffrey M. (1994) Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem.Phys.Lipids, 69, 1-34.

46.Hinz H.J., Kuttenreich H., Meyer R., Renner M., Frund R., Koynova R., Boyanov A.I., Tenchov B.G. (1991) Stereochemistry and size of sugar head groups determine structure and phase behavior of glycolipid membranes: densitometric, calorimetric, and X-ray studies. Biochemistry, 30, 5125-5138.

211

47.Koynova R., MacDonald R.C. (2007) Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently. Biochim.Biophys.Acta, 1768, 2373-2382.

48.Cullis P.R., de Kruijff B., Hope M.J., Verkleij A.J., Nayar R, Farren S.B., Tilcock C., Madden T.D., Bally M.B., (1983) Structural properties of lipids and their functional roles in biological membranes. "Membrane Fluidity in Biology. VI. Concept of Membrane Structure" Aloia R.C. New York: Academic Press; 39-82.

49.De Kruijff B, Cullis P.R., Verkleij M.J., Hope C.J., Van Echeld C.J.A., Taraschi T.F., (1985) Lipid polymorphism and membrane function. "The enzymes of biological membranes" Martonosi A.N. New York, London: Plenum Press; 131-204.

50.Luzzati V., (1968) X-ray diffraction studies of lipid water systems. "Biological membranes: physical fact and function" Chapmam D. London: Academic Press; 71-123.

51.Tate M.W., Eikenberry E.F., Turner D.C., Shyamsunder E., Gruner S.M. (1991) Nonbilayer phases of membrane lipids. Chem.Phys.Lipids, 57, 147-164.

52.Kaasgaard T., Drummond C.J. (2006) Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys.Chem.Chem.Phys., 8, 4957-4975.

53.Kocherbitov V. (2005) Driving forces of phase transitions in surfactant and lipid systems. J.Phys.Chem.B, 109, 6430-6435.

54.Seddon J.M. (1990) Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim.Biophys.Acta, 1031, 1-69.

55.Tschierske C. (2007) Liquid crystal engineering - new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem.Soc.Rev., 36, 1930-1970.

56.Israelachvili J.N., Marcelja S., Horn R.G. (1980) Physical principles of membrane organization. Q.Rev.Biophys., 13, 121-200.

57.Israelachvili J.N., Mitchell D.J., Ninham B.W. (1977) Theory of self-assembly of lipid bilayers and vesicles. Biochim.Biophys.Acta, 470, 185-201.

58.Israelachvili J.N., Mitchell D.J. (1975) A model for the packing of lipids in bilayer membranes. Biochim.Biophys.Acta, 389, 13-19.

59.Gruner S.M. (1985) Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc.Natl.Acad.Sci.U.S.A, 82, 3665-3669.

60.Epand R.M. (2007) Membrane lipid polymorphism. Relationship to bilayer properties and protein function. Methods Mol.Biol., 400, 15-26.

61.de Kruijff B. (1997) Lipid polymorphism and biomembrane function.

Curr.Opin.Chem.Biol., 1, 564-569.

62.Israelachvili J.N., Mitchell D.J., Ninham B.W. (1977) Theory of self assambly of lipid bilayers and vesicles. Biochim.Biohys.Acta, 470, 185-201.

63.Israelachvili JN: (1991) "Intermolecular and surface forces" London: Academic Press.

64.Gruner S.M., Cullis P.R., Hope C.J., Tilcock C.P.S. (1985) Lipid polymorphism: the molecular basis of nonbilayer phases. Annu.Rev.Biophys.Biophys.Chem., 14, 211-238.

65.Gruner S.M. (1989) Stability of lyotropic phases with curved interfaces. J.Phys.Chem., 93, 7562-7570.

66.Gruner S.M., (1992) Nonlamellar lipid phases. "Structure of biological membranes" Yeagle P.L. Boca Raton, FL.: CRC Press; 211-250.

67.Kirk G.L., Gruner S.M., Steim D.L. (1984) A thermodynamic model of the lamellar (La) to inverse hexagonal (HII) lipid membrane-water systems. Biochemistry, 23, 1093-1102.

68.Laggner P., Kriechenbaum M., Rapp G. (1991) Structural intermediates in phospholipid phase transitions. J.Appl.Crystallogr., 24, 836-842.

69.Cooke I.R., Deserno M. (2006) Coupling between lipid shape and membrane curvature. Biophys.J., 91, 487-495.

70.Garavito R.M., Ferguson-Miller S. (2001) Detergents as tools in membrane biochemistry. J.Biol.Chem., 276, 32403-32406.

71.Lichtenberg D., Opatowski E., Kozlov M.M. (2000) Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. Biochim.Biophys.Acta, 1508, 1-19.

72.Seddon A.M., Curnow P., Booth P.J. (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim.Biophys.Acta, 1666, 105-117.

212

73.Hauser H. (2000) Short-chain phospholipids as detergents. Biochim.Biophys.Acta, 1508, 164-181.

74.le Maire M., Champeil P., Moller J.V. (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim.Biophys.Acta, 1508, 86-111.

75.Lichtenberg D., Robson R.J., Dennis E.A. (1983) Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim.Biophys.Acta, 737, 285-304.

76.Ma P., Dong X., Swadley C.L., Gupte A., Leggas M., Ledebur H.C., Mumper R.J. (2009) Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgpmediated multiple drug resistance in leukemia. J.Biomed.Nanotechnol., 5, 151-161.

77.Senkovich O.A., Chernitsky E.A. (1998) On the size of pores arising in erythrocytes under the action of detergents. Membr.Cell Biol., 11, 679-689.

78.Leng J., Egelhaaf S.U., Cates M.E. (2003) Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. Biophys.J., 85, 1624-1646.

79.Jung H.T., Lee S.Y., Kaler E.W., Coldren B., Zasadzinski J.A. (2002) Gaussian curvature and the equilibrium among bilayer cylinders, spheres, and discs.

Proc.Natl.Acad.Sci.U.S.A, 99, 15318-15322.

80.Chou S.H., Tsao H.K., Sheng Y.J. (2006) Morphologies of multicompartment micelles formed by triblock copolymers. J.Chem.Phys., 125, 194903.

81.Ивков В.Г., Берестовский Г.Н.: (1981) "Динамическая структура липидного бислоя" Москва: Наука.

82.Prive G.G. (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods, 41, 388-397.

83.Linke D. (2009) Detergents: an overview. Methods Enzymol., 463, 603-617.

84.Aswal V.K., Goyal P.S. (2003) Selective counterion condensation in ionic micellar solutions. Phys.Rev.E.Stat.Nonlin.Soft.Matter Phys., 67, 051401.

85.de Kruijff B., Verkleij A.J., Leunissen-Bijvelt J., Van Echteld C.J., Hille J., Rijnbout H. (1982) Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin.

Biochim.Biophys.Acta, 693, 1-12.

86.Ortiz A., Killian J.A., Verkleij A.J., Wilschut J. (1999) Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys.J., 77, 2003-2014.

87.Vasilenko I., de Kruijff B., Verkleij A.J. (1982) Polymorphic phase behaviour of cardiolipin from bovine heart and from Bacillus subtilis as detected by 31P-NMR and freezefracture techniques. Effects of Ca2+, Mg2+, Ba2+ and temperature. Biochim.Biophys.Acta, 684, 282-286.

88.Wilschut J., Nir S., Scholma J., Hoekstra D. (1985) Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: correlation between vesicle aggregation, bilayer destabilization, and fusion. Biochemistry, 24, 4630-4636.

89.Dahlberg M. (2007) Polymorphic phase behavior of cardiolipin derivatives studied by coarse-grained molecular dynamics. J.Phys.Chem.B, 111, 7194-7200.

90.Tarahovsky Y.S., Arsenault A.L., MacDonald R.C., McIntosh T.J., Epand R.M. (2000) Electrostatic control of phospholipid polymorphism. Biophys.J., 79, 3193-3200.

91.Zeng K., Lin K.C. (1992) Observation of the inverted hexagonal phase of lipids by scanning tunneling microscopy. Biochim.Biophys.Acta, 1127, 157-162.

92.Powell G.L., Marsh D. (1985) Polymorphic phase behavior of cardiolipin derivatives studied by 31P NMR and X-ray diffraction. Biochemistry, 24, 2902-2908.

93.Luzzati V. (1995) Polymorphism of lipid-water systems – epitaxial relationships, area- per-volume ratios, polar apolar partition. Journal de Physique, 5, 1649-1669.

94.Luzzati V. (1997) Biological significance of lipid polymorphism: the cubic phases.

Curr.Opin.Struct.Biol., 7, 661-668.

95.Luzzati V., Tardieu A., Gulik-Krzywicki T., Rivas E., Reiss-Husson F. (1968) Structure of the cubic phases of lipid-water systems. Nature, 220, 485-488.

96.Luzzati V., Tardieu A., Gulik-Krzywicki T. (1968) Polymorphism of lipids. Nature, 217, 1028-1030.

97.Luzzati V., Vargas R., Mariani P., Gulik A., Delacroix H. (1993) Cubic phases of lipidcontaining systems. Elements of a theory and biological connotations. J.Mol.Biol., 229, 540-

213

98.Luzzati V., Delacroix H., Gulik A. (1996) The micellar cubic phases of lipid-containing systems: Analogies with foams, relations with the infinite periodic minimal surfaces, sharpness of the polar apolar partition. Journal de Physique Ii, 6, 405-418.

99.Luzzati V., Reiss-Husson F., Rivas E., Gulik-Krzywicki T. (1966) Structure and polymorphism in lipid-water systems, and their possible biological implications.

Ann.N.Y.Acad.Sci., 137, 409-413.

100.Brandenburg K., Richter W., Koch M.H.J., Meyer H.W., Seydel U. (1998) Characterization of the nonlamellar cubic and HII structures of lipid A from Salmonella enterica serovar Minnesota be X-ray diffraction and freeze-fracture electron microscopy. Chem.Phys.Lipids, 91, 53-69.

101.Maddaford P.J., Toprakcioglu C (1993) Structure of cubic phases in the ternary system didodecyldimethylammonium bromide/water/hydrocarbon. Langmuir, 9, 2868-2878.

102.Mariani P., Luzzati V., Delacroix H. (1988) Cubic phases of lipid-containing systems. Structure analysis and biological implications. J.Mol.Biol., 204, 165-189.

103.Delacroix H., Mariani P., Gulik-Krzywicki T. (1990) Image analyses of freezefractured lipid-water cubic phases of space group Ia3d. Journal de Physique, 51, C7119C7129.

104.Delacroix H. (1998) Crystallographic analysis of freeze-fracture electron micrographs: application to the structure determination of cubic lipid-water phases. Journal of MicroscopyOxford, 192, 280-292.

105.Delacroix H., Gulik A., Gulik-Krzywicki T. (1998) Crystallographic analysis of freeze-fractured three-dimensionally ordered specimens. Biochimie, 80, 553-562.

106.Cribier S., Gulik A., Fellmann P., Vargas R., Devaux P.F., Luzzati V. (1993) Cubic phases of lipid-containing systems. A translational diffusion study by fluorescence recovery after photobleaching. J.Mol.Biol., 229, 517-525.

107.Lindblom G., Rilfors L. (1989) Cubic phases and isotropic structures formed by membrane lipids – possible biological relevance . Biochim.Biohys.Acta, 988, 221-256.

108.Lindblom G., Rilfors L. (1992) Nonlamellar phases formed by membrane lipids.

Advances in Colloid and Interface Science, 41, 101-125.

109.Hyde S.T. (1996) Bicontinuous structures in lyotropic liquid crystals and crystalline hyperbolic surfaces. Current Opinion in Solid State & Materials Science, 1, 653-662.

110.Hyde S, Andersson S, Larsson K, Blum Z, Landh T, Lidin S et al.: (1997) "The language of shape. The role of curvature in condensed matter: physics, chemistry and biology." Amsterdam: Elsevier.

111.Longley W., McIntosh T.J. (1983) A bicontinuous tetrahedral structure in a liquidcrystalline lipid. Nature, 303, 612-614.

112.Larsson K., (2005) Bicontinuous cubic liquid crystalline materials a historical perspective and modern assessment. "Bicontinuous liquid crystals" Lynch M.L., Spicer P.T. CRC Press Book; 3-14.

113.Corkey R.W., (2005) Aspects of the differential geometry and topology of bicontinuous liquid-crystalline phases. "Bicontinuous liquid crystals" Lynch L.M., Spicer P.T. CRC Press Book; 99-130.

114.Hyde S.T. (1995) On swelling and structure of composite materials. Some theory and applications of lyotropic mesophases. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 103, 227-247.

115.Rummel G., Hardmeyer A., Widmer C., Chiu M.L., Nollert P., Locher K.P., Pedruzzi I., Landau E.M., Rosenbusch J.P. (1998) Lipidic cubic phases: new matrices for the threedimensional crystallization of membrane proteins. J.Stuct.Biol., 121, 82-91.

116.Andersson S., Larsson K., Larsson M., Jacob M. (1999) "Biomathematics. Mathematics of biostructures and biodynamics" Amsterdam: Elsevier.

117.Luzzati V., Delacroix H., Gulic A., Gulik-Krzywicki T., Mariani P., Vargas R., (1997) The cubic phases of lipids. "Lipid polymorphism and membrane properties" Epand R.M. San Diego: Academic Press; 3-23.

118.Vargas R., Mariani P., Gulik A., Luzzati V. (1992) Cubic phases of lipid-containing systems - the structure of phase Q223 (space group Pm3n) - an X-ray scattering study. J.Mol.Biol., 225, 137-145.

214

119.Luzzati V., Vargas R, Gulik A., Mariani P., Seddon J.M., Rivas E. (1992) Lipid polymorphism: a correction. The structure of cubic phase of extinction symbol Fd – consists of two types of disjoined reverse micelles embedded in a 3D hydrocarbon matrix. Biochemistry, 31, 279-285.

120.van Meer G., Voelker D.R., Feigenson G.W. (2008) Membrane lipids: where they are and how they behave. Nat.Rev.Mol.Cell Biol., 9, 112-124.

121.Wassall S.R., Stillwell W. (2009) Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes. Biochim.Biophys.Acta, 1788, 24-32.

122.Sud M., Fahy E., Cotter D., Brown A., Dennis E.A., Glass C.K., Merrill A.H., Jr., Murphy R.C., Raetz C.R., Russell D.W., Subramaniam S. (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res., 35, D527-D532.

123.Bogdanov M., Mileykovskaya E., Dowhan W. (2008) Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. Subcell.Biochem., 49, 197-239.

124.Marsh D. (2008) Protein modulation of lipids, and vice-versa, in membranes.

Biochim.Biophys.Acta, 1778, 1545-1575.

125.Fadeel B., Xue D. (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev.Biochem.Mol.Biol., 44, 264-277.

126.Lajoie P., Goetz J.G., Dennis J.W., Nabi I.R. (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J.Cell Biol., 185, 381-385.

127.Josic D., Clifton J.G. (2007) Mammalian plasma membrane proteomics. Proteomics., 7, 3010-3029.

128.Jacobson K., Mouritsen O.G., Anderson R.G. (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat.Cell Biol., 9, 7-14.

129.Riethmuller J., Riehle A., Grassme H., Gulbins E. (2006) Membrane rafts in hostpathogen interactions. Biochim.Biophys.Acta, 1758, 2139-2147.

130.Landry A., Xavier R. (2006) Isolation and analysis of lipid rafts in cell-cell interactions. Methods Mol.Biol., 341, 251-282.

131.Danielsen E.M., Hansen G.H. (2006) Lipid raft organization and function in brush borders of epithelial cells. Mol.Membr.Biol., 23, 71-79.

132.Kabouridis P.S. (2006) Lipid rafts in T cell receptor signalling. Mol.Membr.Biol., 23,

49-57.

133.Zeyda M., Stulnig T.M. (2006) Lipid Rafts & Co.: an integrated model of membrane organization in T cell activation. Prog.Lipid Res., 45, 187-202.

134.Cordy J.M., Hooper N.M., Turner A.J. (2006) The involvement of lipid rafts in Alzheimer's disease. Mol.Membr.Biol., 23, 111-122.

135.Murphy S.C., Hiller N.L., Harrison T., Lomasney J.W., Mohandas N., Haldar K. (2006) Lipid rafts and malaria parasite infection of erythrocytes. Mol.Membr.Biol., 23, 81-88.

136.Simons K., Vaz W.L. (2004) Model systems, lipid rafts, and cell membranes.

Annu.Rev.Biophys.Biomol.Struct., 33, 269-295.

137.Silvius J.R. (2005) Partitioning of membrane molecules between raft and non-raft domains: insights from model-membrane studies. Biochim.Biophys.Acta, 1746, 193-202.

138.Tarahovsky Y.S., Muzafarov E.N., Kim Y.A. (2008) Rafts making and rafts braking: how plant flavonoids may control membrane heterogeneity. Mol.Cell Biochem., 314, 65-71.

139.Calder P.C., Yaqoob P. (2009) Omega-3 polyunsaturated fatty acids and human health outcomes. Biofactors, 35, 266-272.

140.Le H.D., Meisel J.A., de Meijer V.E., Gura K.M., Puder M. (2009) The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot.Essent.Fatty Acids, 81, 165-170.

141.McNamara R.K. (2009) Evaluation of docosahexaenoic acid deficiency as a preventable risk factor for recurrent affective disorders: current status, future directions, and dietary recommendations. Prostaglandins Leukot.Essent.Fatty Acids, 81, 223-231.

142.Wassall S.R., Stillwell W. (2008) Docosahexaenoic acid domains: the ultimate nonraft membrane domain. Chem.Phys.Lipids, 153, 57-63.

143.Cullis P.R., Grathwohl C. (1977) Hydrocarbon phase transitions and lipid-protein interactions in the erythrocyte membranes. Biochim.Biohys.Acta, 471, 213-226.

215

144.De Grip W.J., Drenthe E.H.S., Van Echeld C.J.A., De Kruijff B, Verkleij M.J. (1979) A possible role of rhodopsin in mantaining bilayer structure in the photoreceptor membrane.

Biochim.Biohys.Acta, 558, 330-337.

145.Landh T (1995) From entangled membranes to eclectic morphologies: cubic phases as subcellular space organizers. FEBS Lett., 369, 13-17.

146.Hoath S., Norlen L., (2005) Cubic phases and human skin: theory and practice. "Bicontinuous liquid crystals" Lynch M.L., Spicer P.T. Santa Barbara: CRC Press Book; 41-

147.Mariani P., Luzzati V., Delacroix H. (1988) Cubic phases of lipid-containing systems. J.Mol.Biol., 204, 165-189.

148.Siegel D.P., (2005) The relationship between bicontinuous inverted cubic phases and membrane fusion. "Bicontinuous liquid crystals" Lynch M.L., Spicer P.T. Boca Raton, FL: CRC Press; 59-98.

149.Melikyan G.B. (2008) Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm. Retrovirology., 5, 111-124.

150.Maurer U.E., Sodeik B., Grunewald K. (2008) Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc.Natl.Acad.Sci.U.S.A, 105, 10559-10564.

151.Liu T., Wang T., Chapman E.R., Weisshaar J.C. (2008) Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophys.J., 94, 1303-1314.

152.Yoon T.Y., Okumus B., Zhang F., Shin Y.K., Ha T. (2006) Multiple intermediates in SNARE-induced membrane fusion. Proc.Natl.Acad.Sci.U.S.A, 103, 19731-19736.

153.Zhukovsky M.A., Leikina E., Markovic I., Bailey A.L., Chernomordik L.V. (2006) Heterogeneity of early intermediates in cell-liposome fusion mediated by influenza hemagglutinin. Biophys.J., 91, 3349-3358.

154.Chernomordik L. (1996) Non-bilayer lipids and biological fusion intermediates.

Chem.Phys.Lipids, 81, 203-213.

155.Siegel D.P., Epand R.M. (1997) The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys.J., 73, 3089-3111.

156.Siegel D.P., Epand R.M. (2000) Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms. Biochim.Biophys.Acta, 1468, 87-98.

157.Markin V.S., Kozlov M.M., Borovjagin V.L. (1984) On the theory of membrane fusion. The stalk mechanism. Gen.Physiol Biophys., 3, 361-377.

158.Borovjagin V.L., Vergara J.A., McIntosh T.J. (1982) Morphology of the intermediate stages in the lamellar to hexagonal lipid phase transition. J.Membr.Biol., 69, 199-212.

159.Tenchov B., Koynova R., Rapp G. (1998) Accelerated formation of cubic phases in phosphatidylethanolamine dispersions. Biophys.J., 75, 853-866.

160.Cherezov V., Siegel D.P., Shaw W., Burgess S.W., Caffrey M. (2003) The kinetics of non-lamellar phase formation in DOPE-Me: relevance to biomembrane fusion. J.Membr.Biol., 195, 165-182.

161.Haluska C.K., Riske K.A., Marchi-Artzner V., Lehn J.M., Lipowsky R., Dimova R. (2006) Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc.Natl.Acad.Sci.U.S.A, 103, 15841-15846.

162.Frederik P.M., Burger K.N., Stuart M.C., Verkleij A.J. (1991) Lipid polymorphism as observed by cryo-electron microscopy. Biochim.Biophys.Acta, 1062, 133-141.

163.Siegel D.P., Green W.J., Talmon Y. (1994) The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy. Biophys.J., 66, 402-414.

164.Johnsson M., Edwards K. (2001) Phase behavior and aggregate structure in mixtures of dioleoylphosphatidylethanolamine and poly(ethylene glycol)-lipids. Biophys.J., 80, 313-

165.Chernomordik L.V., Zimmerberg J., Kozlov M.M. (2006) Membranes of the world unite! J.Cell Biol., 175, 201-207.

166.Chernomordik L.V., Kozlov M.M. (2008) Mechanics of membrane fusion.

Nat.Struct.Mol.Biol., 15, 675-683.

216

167.Kuzmin P.I., Zimmerberg J., Chizmadzhev Y.A., Cohen F.S. (2001) A quantitative model for membrane fusion based on low-energy intermediates. Proc.Natl.Acad.Sci.U.S.A, 98, 7235-7240.

168.Siegel D.P. (2008) The Gaussian curvature elastic energy of intermediates in membrane fusion. Biophys.J., 95, 5200-5215.

169.Efrat A., Chernomordik L.V., Kozlov M.M. (2007) Point-like protrusion as a prestalk intermediate in membrane fusion pathway. Biophys.J., 92, L61-L63.

170.Bryant G., Koster K.L. (2004) Dehydration of solute-lipid systems: hydration forces analysis. Colloids Surf.B Biointerfaces., 35, 73-79.

171.Gawrisch K., Ruston D., Zimmerberg J., Parsegian V.A., Rand R.P., Fuller N. (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys.J., 61, 1213-1223.

172.Leikin S., Parsegian V.A., Rau D.C., Rand R.P. (1993) Hydration forces.

Annu.Rev.Phys.Chem., 44, 369-395.

173.Marsh D. (1989) Water adsorption isotherms and hydration forces for lysolipids and diacyl phospholipids. Biophys.J., 55, 1093-1100.

174.Kozlovsky Y., Kozlov M.M. (2002) Stalk model of membrane fusion: solution of energy crisis. Biophys.J., 82, 882-895.

175.Kozlovsky Y., Efrat A., Siegel D.P., Kozlov M.M. (2004) Stalk phase formation: effects of dehydration and saddle splay modulus. Biophys.J., 87, 2508-2521.

176.Melikyan G.B., White J.M., Cohen F.S. (1995) GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J.Cell Biol., 131, 679-691.

177.Schwartz M.L., Merz A.J. (2009) Capture and release of partially zipped trans-SNARE complexes on intact organelles. J.Cell Biol., 185, 535-549.

178.Smeijers A.F., Markvoort A.J., Pieterse K., Hilbers P.A. (2006) A detailed look at vesicle fusion. J.Phys.Chem.B, 110, 13212-13219.

179.Wong J.L., Koppel D.E., Cowan A.E., Wessel G.M. (2007) Membrane hemifusion is a stable intermediate of exocytosis. Dev.Cell, 12, 653-659.

180.Tarahovsky Y.S., Khusainov A.A., Daugelavichus R., Bakene E. (1995) Structural changes in Escherichia coli membranes induced by bacteriophage T4 at different temperatures. Biophys.J., 68, 157-163.

181.Tarahovsky Y.S., Khusainov A.A., Deev A.A., Kim Y.V. (1991) Membrane fusion during infection of Escherichia coli cells by phage T4. FEBS Lett., 289, 18-22.

182.Yang L., Huang H.W. (2002) Observation of a membrane fusion intermediate structure. Science, 297, 1877-1879.

183.Yang L., Huang H.W. (2003) A rhombohedral phase of lipid containing a membrane fusion intermediate structure. Biophys.J., 84, 1808-1817.

184.Yang L., Ding L., Huang H.W. (2003) New phases of phospholipids and implications to the membrane fusion problem. Biochemistry, 42, 6631-6635.

185.Lee A.G. (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim.Biophys.Acta, 1612, 1-40.

186.Lee A.G. (2004) How lipids affect the activities of integral membrane proteins.

Biochim.Biophys.Acta, 1666, 62-87.

187.Lee A.G. (2005) How lipids and proteins interact in a membrane: a molecular approach. Mol.Biosyst., 1, 203-212.

188.Palsdottir H., Hunte C. (2004) Lipids in membrane protein structures. Biochim.Biophys.Acta, 1666, 2-18.

189.Brown M.F. (1994) Modulation of rhodopsin function by properties of the membrane bilayer. Chem.Phys.Lipids, 73, 159-180.

190.Escriba P.V., Ozaita A., Ribas C., Miralles A., Fodor E., Farkas T., Garcia-Sevilla J.A. (1997) Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proc.Natl.Acad.Sci.U.S.A, 94, 11375-11380.

191.Yang Q., Alemany R., Casas J., Kitajka K., Lanier S.M., Escriba P.V. (2005) Influence of the membrane lipid structure on signal processing via G protein-coupled receptors.

Mol.Pharmacol., 68, 210-217.

217

192.Epand R.F., Martinou J.C., Fornallaz-Mulhauser M., Hughes D.W., Epand R.M. (2002) The apoptotic protein tBid promotes leakage by altering membrane curvature. J.Biol.Chem., 277, 32632-32639.

193.Basanez G., Sharpe J.C., Galanis J., Brandt T.B., Hardwick J.M., Zimmerberg J. (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J.Biol.Chem., 277, 49360-49365.

194.Drobnies A.E., Davies S.M., Kraayenhof R., Epand R.F., Epand R.M., Cornell R.B. (2002) CTP:phosphocholine cytidylyltransferase and protein kinase C recognize different physical features of membranes: differential responses to an oxidized phosphatidylcholine.

Biochim.Biophys.Acta, 1564, 82-90.

195.Armstrong D.L., Borchardt D.B., Zidovetzki R. (2002) Synergistic perturbation of phosphatidylcholine/sphingomyelin bilayers by diacylglycerol and cholesterol. Biochem.Biophys.Res.Commun., 296, 806-812.

196.Szule J.A., Fuller N.L., Rand R.P. (2002) The effects of acyl chain length and saturation of diacylglycerols and phosphatidylcholines on membrane monolayer curvature. Biophys.J., 83, 977-984.

197.Alonso A., Goni F.M., Buckley J.T. (2000) Lipids favoring inverted phase enhance the ability of aerolysin to permeabilize liposome bilayers. Biochemistry, 39, 14019-14024.

198.Basanez G., Nieva J.L., Rivas E., Alonso A., Goni F.M. (1996) Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion. Biophys.J., 70, 2299-2306.

199.Li Z., Vance D.E. (2008) Phosphatidylcholine and choline homeostasis. J.Lipid Res., 49, 1187-1194.

200.Kent C. (2005) Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim.Biophys.Acta, 1733, 53-66.

201.Dowhan W., Bogdanov M. (2009) Lipid-dependent membrane protein topogenesis.

Annu.Rev.Biochem., 78, 515-540.

202.Bogdanov M., Sun J., Kaback H.R., Dowhan W. (1996) A phospholipid acts as a chaperone in assembly of a membrane transport protein. J.Biol.Chem., 271, 11615-11618.

203.Bogdanov M., Umeda M., Dowhan W. (1999) Phospholipid-assisted refolding of an integral membrane protein. Minimum structural features for phosphatidylethanolamine to act as a molecular chaperone. J.Biol.Chem., 274, 12339-12345.

204.Erbay E., Babaev V.R., Mayers J.R., Makowski L., Charles K.N., Snitow M.E., Fazio S., Wiest M.M., Watkins S.M., Linton M.F., Hotamisligil G.S. (2009) Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat.Med., 15, 1383-1391.

205.Kaushik S., Massey A.C., Cuervo A.M. (2006) Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J., 25, 3921-3933.

206.Phillips R., Ursell T., Wiggins P., Sens P. (2009) Emerging roles for lipids in shaping membrane-protein function. Nature, 459, 379-385.

207.Sanghera N., Pinheiro T.J. (2002) Binding of prion protein to lipid membranes and implications for prion conversion. J.Mol.Biol., 315, 1241-1256.

208.Yanagisawa K., Odaka A., Suzuki N., Ihara Y. (1995) GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer's disease. Nat.Med., 1, 1062-1066.

209.Yanagisawa K. (2005) GM1 ganglioside and the seeding of amyloid in Alzheimer's disease: endogenous seed for Alzheimer amyloid. Neuroscientist., 11, 250-260.

210.Eidelman O., BarNoy S., Razin M., Zhang J., McPhie P., Lee G., Huang Z., Sorscher E.J., Pollard H.B. (2002) Role for phospholipid interactions in the trafficking defect of Delta F508-CFTR. Biochemistry, 41, 11161-11170.

211.Bangham A.D., Horne R.W. (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope.

J.Mol.Biol., 8, 660-668.

212.Bangham A.D. (1995) Surrogate cells or Trojan horses. The discovery of liposomes. Bioessays, 17, 1081-1088.

213.Lasic D.D. (1998) Novel applications of liposomes. Trends Biotechnol., 16, 307-321.

218

214.Malam Y., Loizidou M., Seifalian A.M. (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol.Sci., 30, 592-599.

215.Torchilin V.P. (2005) Recent advances with liposomes as pharmaceutical carriers.

Nat.Rev.Drug Discov., 4, 145-160.

216.Torchilin V.P. (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS.J., 9, E128-E147.

217.Michalet X. (2007) Equilibrium shape degeneracy in starfish vesicles.

Phys.Rev.E.Stat.Nonlin.Soft.Matter Phys., 76, 021914.

218.Ziherl P., Svetina S. (2005) Nonaxisymmetric phospholipid vesicles: rackets, boomerangs, and starfish. Europhys.Lett., 70, 690-696.

219.Yanagisawa M., Imai M., Taniguchi T. (2008) Shape deformation of ternary vesicles coupled with phase separation. Phys.Rev.Lett., 100, 148102.

220.Torchilin V.P. (2001) Structure and design of polymeric surfactant-based drug delivery systems. J.Control Release, 73, 137-172.

221.Torchilin V.P. (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm.Res., 24, 1-16.

222.Sutton D., Nasongkla N., Blanco E., Gao J. (2007) Functionalized micellar systems for cancer targeted drug delivery. Pharm.Res., 24, 1029-1046.

223.Fee J.P.H., Mcclean E., Collier P.S., Dundee J.W. (1985) Plasma diazepam concentations folloving intravenous valium and valium mixed micelles. Br.J.Clin.Pharmacol., 19, 581-582.

224.Winn M.J., White P.M., Scott A.K., Pratt S.K., Park B.K. (1989) The bioavailability of a mixed micellar preparation of vitamin K1, and its procoagulant effect in anticoagulated rabbits. J.Pharm.Pharmacol., 41, 257-260.

225.Trissel L.A. (1997) Pharmaceutical properties of paclitaxel and their effects on preparation and administration. Pharmacotherapy, 17, 133S-139S.

226.Kim D.W., Kim S.Y., Kim H.K., Kim S.W., Shin S.W., Kim J.S., Park K., Lee M.Y., Heo D.S. (2007) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small- cell lung cancer. Ann.Oncol., 18, 2009-2014.

227.Lee K.S., Chung H.C., Im S.A., Park Y.H., Kim C.S., Kim S.B., Rha S.Y., Lee M.Y., Ro J. (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res.Treat., 108, 241-250.

228.Nassoy P., Cuvelier D., Bruinsma R., Brochard-Wyart F. (2008) Nanofluidics in cellular tubes under oscillatory extension. Europhys.Lett., 84, 18004-18009.

229.Cuvelier D., Chiaruttini N., Bassereau P., Nassoy P. (2005) Pulling long tubes from firmly adhered vesicles. Europhys.Lett., 71, 1015-1021.

230.Brazhnik K.P., Vreeland W.N., Hutchison J.B., Kishore R., Wells J., Helmerson K., Locascio L.E. (2005) Directed growth of pure phosphatidylcholine nanotubes in microfluidic channels. Langmuir, 21, 10814-10817.

231.Mahajan N., Fang J. (2005) Two-dimensional ordered arrays of aligned lipid tubules on substrates with microfluidic networks. Langmuir, 21, 3153-3157.

232.Liu H., Bachand G.D., Kim H., Hayden C.C., Abate E.A., Sasaki D.Y. (2008) Lipid nanotube formation from streptavidin-membrane binding. Langmuir, 24, 3686-3689.

233.Yuan J., Hira S.M., Strouse G.F., Hirst L.S. (2008) Lipid bilayer discs and banded tubules: photoinduced lipid sorting in ternary mixtures. J.Am.Chem.Soc., 130, 2067-2072.

234.John J., Masuda M., Okada Y., Yase K., Shimizu T. (2001) Nanotube Formation from Renewable Resources via Coiled Nanofibers. Adv.Mater., 13, 715-718.

235.Zhao Y., Fang J. (2008) Direct printing of self-assembled lipid tubules on substrates. Langmuir, 24, 5113-5117.

236.Tokarz M., Akerman B., Olofsson J., Joanny J.F., Dommersnes P., Orwar O. (2005) Single-file electrophoretic transport and counting of individual DNA molecules in surfactant nanotubes. Proc.Natl.Acad.Sci.U.S.A, 102, 9127-9132.

237.Zarif L. (2005) Drug delivery by lipid cochleates. Methods Enzymol., 391, 314-329.

238.Syed U.M., Woo A.F., Plakogiannis F., Jin T., Zhu H. (2008) Cochleates bridged by drug molecules. Int.J.Pharm., 363, 118-125.