Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цитология.docx
Скачиваний:
213
Добавлен:
15.03.2015
Размер:
10.54 Mб
Скачать

17. Особенности организации наследственного аппарата вирусов. Рнк- и днк-содержащие вирусы. Ретровирусы.

См. вопр. №1

Ретровирусы — семейство РНК-содержащих вирусов, заражающих преимущественно позвоночных. Наиболее известный и активно изучаемый представитель — вирус иммунодефицита человека.

После инфицирования клетки ретровирусом в цитоплазме начинается синтез вирусного ДНК-генома с использованием вирионной РНК в качестве матрицы. Все ретровирусы используют для репликации своего генома механизм обратной транскрипции: вирусный фермент обратная транскриптаза (или ревертаза) синтезирует одну нить ДНК на матрице вирусной РНК, а затем уже на матрице синтезированной нити ДНК достраивает вторую, комплементарную ей нить. Образуется двунитевая молекула ДНК, которая интегрируется в хромосомную ДНК клетки во время клеточного деления, когда нет ядерной оболочки, (исключением является ВИЧ, ДНК которого активно проникает в ядро) и далее служит матрицей для синтеза молекул вирусных РНК. Эти РНК выходят из клеточного ядра и в цитоплазме клетки упаковываются в вирусные частицы, способные инфицировать новые клетки.

18. Особенности организации наследственного аппарата прокариот. Автономные генетические элементы и их значение.

У прокариот генетический аппарат представлен двухцепочечной кольцевой молекулой ДНК (нуклеоид, генофор), в которой содержится основная видовая наследственная информация, и плазмоном - совокупностью автономных генетических элементов. Это мелкие кольцевые молекулы ДНК - плазмиды и эписомы, содержащие ограниченную информацию о некоторых признаках данного организма (в плазмидах R находятся гены устойчивости к антибиотикам;эписомы F определяют способность к размножению). Плазмиды и эписомы способны к репликации и перемещению из клетки в клетку при конъюгации.

19. Организация наследственного аппарата эукариот. Надмолекулярный уровень организации генетического материала. Строение хромосом.

У эукариот генетический аппарат представлен надмолекулярными структурами - хромосомами, химической основой которых является хроматин (ДНК + белки). Хроматин может быть конденсирован, неактивный - гетерохроматин, или деконденсирован, активный – эухроматин. Не вся ДНК эукариот является информативной. Большая часть ее представлена регуляторными последовательностями. Многие участки повторяются в геноме (умеренные и высокие повторы).

20. Хроматин: химический состав и структурная организация. Эухроматин и гетерохроматин. Уровни организации хроматина.

Хромосомы в виде плотных структур выявляются во время деления клетки, а в интерфазе они деспирализованы и вся совокупность наследственного материала носит название - хроматин.

Большая часть интерфазного хроматина находится в деконденсированном состоянии, на разных его участках идут процессы транскрипции - это активный хроматин - эухроматин. Но есть участки конденсированного (плотного) хроматина - это неактивный гетерохроматин.

Различают структурный (конститутивный) гетерохроматин - участки постоянно конденсированные, неинформативные. Второй вид гетерохроматина - факультативный, это те участки, которые могут деконденсироваться и переходить в активное состояние. При подготовке к делению происходит постепенная общая конденсация хроматина и весь генетический материал представляет собой факультативный гетерохроматин; в световом микроскопе он обнаруживается в виде плотных структур - хромосом.

Процесс конденсации хроматина очень важен для регуляции активности генетического материала и для свободного распределения хромосом в цитоплазме клетки во время деления. По мере конденсации активность хроматина снижается. В результате усиления компактизации хроматина и процесса спирализации метафазные хромосомы уменьшаются по длине в несколько тысяч раз и свободно размещаются в цитоплазме клетки, а затем расходятся к полюсам. Форма метафазных хромосом зависит от расположения центромеры.

Различают несколько уровней организации хроматина:

1. Расправленные нити. Эта структура состоит из 1 молекулы ДНК и молекул гистонов, расположенных параллельно. Неактивный хроматин.

2. Нуклеосомный уровень. Формируются компактные структуры из 8 молекул гистонов и участка молекулы ДНК (около 200 пар нуклеотидов) - нуклеосомы. Хроматиновая нить укорачивается в 7 раз. Наиболее активный хроматин.

3. Нуклеомерный. Объединяются 8-10 нуклеосом, образуется нуклеомер. Укорочение нити в 20 раз.

4. Хромомерный. Нуклеомерная нить образует петли, соединённые белками. Укорочение в 200 раз.

5. Хромонемный уровень образуется в результате сближения хромомеров по длине.

6. Хроматидный. Хромонема складывается в несколько раз, образуя тело хроматиды. Хроматиду можно назвать нереплицированной хромосомой. После репликации ДНК хромосома содержит 2 хроматиды - это реплицированная хромосома.