Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kursovaya_rabota_zhestkie_diski.docx
Скачиваний:
250
Добавлен:
11.02.2015
Размер:
23.18 Mб
Скачать

Возможные причины неисправностей платы электроники

Другие причины отказа: скачки напряжения, неисправности блока питания, перегрев. Проблемы, связанные с платой электроники, обычно заметны сразу же после их возникновения, нередко они приводят к полной неработоспособности устройства.

Типичные симптомы отказа платы электроники:

  • Невозможность загрузки с жесткого диска

  • Неправильное определение модели HDD в BIOS

  • Запах гари

  • Жесткий диск включается, но не распознается

  • Стук или щелканье

  • Видимые повреждения компонентов платы

Если замечены какие-либо из перечисленных симптомов, необходимо сразу же отключить жесткий диск, не запуская никакие программы для восстановления данных. Следует помнить, что ремонт или замена неисправных компонентов диска могут производиться только в условиях специальной лаборатории.

Технологии восстановления данных при неисправности платы электроники

При серьезных повреждениях плата электроники заменяется полностью. Трудность процесса заключается в специфичности прошивки для конкретного устройства, о чем уже было сказано выше. Для восстановления прошивки используется специальное оборудование.

Многие неисправности электроники приводят к повреждению внутренних компонентов, чаще всего привода магнитных головок. Устранение таких неисправностей производится в специальной чистой комнате, в которой обеспечивается надежная защита от загрязнения и действия статического электричества.

1.2 Запись и чтение информации с жесткого диска

В процессе записи информации на жесткие магнитные диски головка дисковода с сердечником из магнито-мягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожесткого носителя (большая остаточная намагниченность). На магнитную головку поступают последовательности электрических импульсов (последовательности логических единиц и нулей), которые создают в головке магнитное поле. В результате последовательно намагничиваются (логическая единица) или не намагничиваются (логический нуль) элементы поверхности носителя. При считывании информации при движении магнитной головки над поверхностью носителя намагниченные участки носителя вызывают в ней импульсы тока (явление электромагнитной индукции). Последовательности таких импульсов передаются по магистрали в оперативную память компьютера.

Система магнитной записи

На рисунке показаны носитель и головка записи кольцевого типа. Головка состоит из сердечника с обмоткой. В сердечнике имеется зазор шириной 0,1-10 мкм. При включении в обмотку тока записи (входной сигнал) в области зазора возникает магнитное поле рассеяния (поле записи), которое воздействует на прилегающую к головке область рабочего слоя движущегося магнитного носителя, например магнитной ленты

Рисунок 10 -Процесс магнитной записи: 1 — носитель записи, 2 — головка записи. Внизу показана последовательность участков с противоположным направлением намагниченности

В цифровой магнитной записи, используемой в компьютерной технике, в магнитную головку поступает ток, при котором поле записи через определенные промежутки времени изменяет свое направление на противоположное. В результате под действием поля рассеяния магнитной головки происходят намагничивание и перемагничивание отдельных участков движущегося магнитного носителя. При периодическом изменении направления поля записи в рабочем слое носителя возникает цепочка чередующихся участков с противоположным направлением намагниченности, которые соприкасаются друг с другом одноименными полюсами. В итоге сигнал, поступающий в головку записи, оставляет на движущемся носителе след, то есть магнитную запись. Рассмотренный вид записи, когда участки рабочего слоя носителя перемагничиваются вдоль его движения, называется продольной записью.

Рисунок 11 – Система магнитной записи

После записи информации на магнитном носителе остаются участки, обладающие разным магнитным состоянием. При двоичном кодировании принято обозначать одно состояние цифрой 0, а другое — цифрой 1. Цифры 0 и 1 и соответствующие им участки носителя называются битами. Определенная последовательность из фиксированного количества нулей и единиц соответствует тому или иному символу, например: букве алфавита, цифре, знаку препинания и т.д. Таким образом, создавая в рабочем слое носителя нужную очередность намагниченных и перемагниченных участков, можно осуществить запись информации.

Материал основы магнитных носителей должен обладать вполне определенными физико-механическими свойствами. Так, у магнитной ленты основа должна иметь высокую прочность на растяжение, хорошую износостойкость, гладкую поверхность, равномерную толщину, быть эластичной. Основным материалом для изготовления основы лент и гибких дисков является полиэтилентерефталат (лавсан). Материалом основы жестких дисков является алюминиевый сплав. Он должен быть пригоден для полировки, обладать высокой твердостью и износостойкостью, в нем не должны образовываться микротрещины в процессе его обработки. В качестве запоминающей (регистрирующей) среды в магнитных носителях используются ферролаковые рабочие слои. Ферролаковый слой готовят путем введения в состав лака магнитного порошка, который представляет собой систему, состоящую из микрочастиц размером менее микрона. Частицы должны быть максимально однородными. Магнитные поля, в которых перемагничиваются частицы, должны иметь близкие значения. Поверхность частиц должна быть идеально гладкой. Наличие на поверхности частиц различных неровностей, дефектов приводит к снижению их магнитной однородности.

В магнитных носителях применяют магнитные порошки с частицами, которые представляют собой в основном однодоменные образования. Коэрцитивная сила порошка должна быть достаточно большой. Кроме того, магнитные порошки должны обладать высокими значениями намагниченности насыщения. Частицы порошка могут иметь разную форму: игольчатую, сферическую и пластинчатую. В настоящее время предпочтение отдают порошкам, имеющим частицы игольчатой формы. В качестве среды записи в магнитных носителях выступают ферромагнетики, отличительной особенностью которых является наличие микроскопических однородно намагниченных объемов вещества, называемых доменами. В отсутствие внешнего поля хаотично ориентированные магнитные моменты отдельных доменов взаимно компенсируют друг друга, поэтому результирующее поле ферромагнетика близко к нулю.

    1. Адресация данных жесткого диска

Минимальной адресуемой областью данных на жёстком диске является сектор. Размер сектора традиционно равен 512 байт.         Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder-head-sector, CHS) и линейная адресация блоков (англ. linear block addressing, LBA).

CHS (от англ. Cylinder, Head, Sector — цилиндр, головка, сектор) — система адресации сектора, как минимальной единицы хранения данных в накопителях на жёстких магнитных дисках, накопителях на гибких магнитных дисках и т.п, основанная на использовании физических адресов геометрии диска.

В этой системе сектор адресуется кортежем из трёх координат: цилиндр-головка-сектор (Cylinder, Head, Sector), именно так, как он физически расположен на диске.

Под цилиндром понимается совокупность дорожек одинакового радиуса на всех магнитных поверхностях пластин одного накопителя. 

Контроллер жёсткого диска интерпретирует значение в радиус, на который передвигается магнитная головка чтения. С каждой магнитной поверхности магнитного диска чтение производит только одна головка, следовательно, указывая головку, мы также указываем ту поверхность, с которой следует считывать информацию. Сектор диска, как понятно из геометричекого определения, интерпретируется как диапазон градуса поворота диска.

Очевидно, что такая схема плохо подходит к не дисковым устройствам хранения (ленты, сетевые хранилища), потому и не используется для них. Схема CHS и её расширенная версия ECHS использовались на ранних приводах ATA использующих интерфейс ESDI.

В жёстких дисках объёмом более 524 Мб со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами». Так, механизм адресации Large сообщал BIOS вдвое большее число головок и вдвое меньшее число цилиндров. Затем контроллеры стали сообщать, будто в дорожке 63 сектора, а в цилиндре 255 дорожек (максимально допустимые значения), число же цилиндров подбирается сообразно объему. Представить жесткий диск с такими характеристиками трудно — он бы состоял из 128 пластин, поэтому контроллер занят преобразованием логических адресов в физические координаты. Реальное число секторов в современном диске — около ста, и дорожек бывает не больше шести.

LBA (англ. Logical block addressing) — механизм адресации и доступа к блоку данных на жёстком или оптическом диске, при котором системному контроллеру нет необходимости учитывать геометрию самого жесткого диска (количество цилиндров, сторон, секторов на цилиндре). Контроллеры современных IDE дисков в качестве основного режима трансляции адреса используют LBA.

Привод, способный поддерживать режим LBA, сообщает об этом в информации идентификации привода.

Суть LBA состоит в том, что каждый блок, адресуемый на жёстком диске имеет свой номер, целое число, начиная с нуля и т. д. (то есть первый блок LBA=0, второй LBA=1, ...)

LBA 0 = Цилиндр 0/Головка 0/Сектор 1

Еще одно преимущество метода адресования LBA — то, что ограничение размера диска обусловлено лишь разрядностью LBA. В настоящее время для задания номера блока используется 48 бит, что при использовании двоичной системы исчисления даёт возможность адресовать на приводе (248) 281 474 976 710 656 блоков (то есть, при блоке в 512 байт, 128 ПиБ).

LBA заменяет собой более ранние схемы (CHS и Large), в которых нужно было учитывать физические особенности устройства дисков.

Технический комитет X3T10 установил правила получения адреса блока в режиме LBA:

  • LBA — адрес блока по LBA.

  • Cylinder — номер цилиндра.

  • noofheads — количество головок.

  • heads — номер выбранной головки.

  • sectors/track — количество секторов на одной дорожке.

  • Sector — номер сектора.

Преобразования между CHS и LBA

Кортежи CHS можно преобразовать в адреса LBA и обратно по следующим формулам:

где — номер цилиндра,- номер головки,- номер сектора,— число головок,— число секторов на дорожке,— операция взятия остатка от деления.

    1. Характеристики жесткого диска

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]