Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_vysshey_matematike_33_netu_37_ne_ves....docx
Скачиваний:
6
Добавлен:
21.11.2019
Размер:
821.44 Кб
Скачать

60. Дифференциальные ур-я 1-го порядка с разделяющимися переменными:

Дифференциальным уравнением 1-го порядка с разделяющимися переменными называется уравнение вида: P(x)dx+Q(y)dy=0 (1). Его общим интегралом будет: (2). Уравнение вида: M1(xN1(y)dx+M2(xM2(y)dy=0 (3), а также уравнение вида: y'=f1(xf2(y) (4) уравнения, которые с пом. алгебраических преобразований приводятся к ур-ям (3) или (4) наз. ур-ми с разделяющимися переменными. Рассмотрим ур-е (3). Допустим, что N1(yM2(x)≠0. Разделим обе части ур-я (3) на N1(y)·M2(x). Получим: ,

Рассмотрим ур-е (4): Домножим обе части ур-я на dx и разделим на f2(y) в предположении, что f2(y)≠0.

– общий интеграл.

Замечание: При выводе общих интегралов ур-ий (3) и (4) сделаем нек. допущения, к-е могут привести к потере решений. Случай, когда M1(y)·M2(x)=0 или f2(y)=0 необходимо рассматривать отдельно, чтобы не потерять возможных решений дифференциальных ур-ий.

62. Линейные дифф-е ур-я 1-го порядка:

Ур-е: y'+P(x)y=Q(x) (1) линейное относительно неизвестной ф-ии y и её производной y' (а также любое ур-е, с пом. алгебраических преобразований, приводящееся к виду (1) наз. неоднородным линейным дифф-ым ур-ем 1-го порядка. В случае, когда Q(x)=0 ур-е наз. однородным линейным дифф-м ур-м 1-го порядка. Ф-ии Q(x),P(x) должны быть непрерывны в нек. области, для того, чтобы выпол. услов. теоремы Коши.

Методы решения:

1.Метод вариации произвольной постоянной (метод Лангранжа):

y'+P(x)y=0

ln y|=-

y=

=

y0=C·

C=C(x)-частное реш. неоднородного ур-я (1)

yн=C(x)·

d(x)·

C '(x)-C(x)·P(x)+C(x)·P(x)=Q(x)·

yн=

Общее реш-е неоднор. ур-я (1) имеет вид:

y=y0+yн=С·

2.Метод Бернулли:

Любую функцию можно представить в виде произв-я 2-х ненулевых ф-ий y(x)=U(xV(x)

U'V+UV'+P·UV=Q

U'V+U(V'+PV)=0=Q

V'+PV=0

V'+PV=0

ln|V|=-

V=C· C=1

V=

U' =0

U'=Q

U=

U=(

U' V+U V'+U Vtgx=

U' V+U(V'+Vtgx)=

V'+Vtgx=0

V'+Vtgx=0

+Vdx=0

ln|V|=ln|cosx|+ln|C|

ln|V|=ln|C·cosx| C=1

V=cosx

U'cosx=

U'=

U=tgx+C

y=(tgx+C)·cosx=sinx+C·cosx

64. Линейные дифференциальные ур-я 2-го порядка с постоянными коэффициентами:

y''+py'+gy=0 (1) p, g Є R.

λ2+pλ+g=0 (2)

1) λ1, λ2, Є R, λ1≠λ2

Решение: y1= , y2= , y0=C1 +C2

2) λ1, λ2 Є R, λ1=λ2

y1= , y2=x , y0=C1 +C2

3)λ1, λ2 Є C, λ1/2=α±βi

y1= 2= sinβx

y0=C1 2 1cosβx+C2sinβx)

Рассмотрим ур-е: y''+py'+gy=f(x) (3)

Во многих случаях правая часть ур-я (3) имеет вид: f(x)= (4), где Pr(x) и Qs(x)-многочлены в степени r и s соответственно, а и в- некоторые постоянные числа.

Известно, что в этом случае частное решение yн(х) ур-я (3) имеет аналогичную структуру правой части, т.е. частное решение в этом случае необходимо искать

ун(х)=хк m(x)cosbx+Q(x)sinbx) (5), где Pm(x) и Qm(x)- многочлены степени m

m={r,s}, k=числу корней характеристического ур-я совпадающему числу z=a+bi

f(x)=

yнк m(x)cosbx+Qm(x)sinbx)

m=max

k: a+bi

64

31.Числовые ряды: если задана числовая последовательность (un), то выражение

u1 + u2 + u3 +… + un +…, называется числовым рядом.

n

Если существ. lim Sn = S, где Sn = ∑ uk = u1 + u2 +… + un

n - ∞ k=1

его n –ая частичная сумма, то ряд назыв. сходящимся (число S – сумма ряда),

в противном случае – расходящимся.

Если ряд сходится, то

lim un = 0

n - ∞ (необходимый признак сходимости)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]