Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Техника и технология г.х..doc
Скачиваний:
38
Добавлен:
18.11.2019
Размер:
7.75 Mб
Скачать

5.6. Электрическая часть электростанций

Современная электроэнергетика базируется на трехфазном пе­ременном токе с частотой 50 Гц и стандартным напряжением: 127. 220, 380, 660 В и 3, 6, 10, 20, 35, ПО, 150, 220, 330, 500, 750 кВ. Применение трехфазного переменного тока объясняется экономи­ческой эффективностью установок и сетей, возможностью транс­формации и передачи электроэнергии на большие расстояния, а также применения надежных, простых и экономичных асинхрон­ных электродвигателей.

Электрическая часть каждой электростанции характеризуется схемой электрических соединений, на которой условными обозна­чениями нанесены все агрегаты, аппараты и электрические соеди­нения между ними. Схемы электрических соединений разделяются на две части: 1) главные схемы, или первичные цепи, по которым электроэнергия передается от генераторов к электроприемникам, и 2) схема вторичных цепей, которые используются для соединения и питания релейной защиты, автоматики, приборов учета, контроля и

управления.

Главные схемы электростанций выполняются, как правило. однолинейными, для одной фазы, что упрощает и придает им на­глядность. На однолинейных схемах все элементы первичной цепи показываются в обесточенном состоянии. При выборе схемы элек­трических соединений электростанций руководствуются следую­щими соображениями. Если более 75% мощности станции переда­ется в энергосистему, тогда целесообразно применение схемы бло­ка «генератор-трансформатор», при которой генератор соединяется непосредственно с трансформатором без промежуточных звеньев.

В блочных схемах мощность трансформаторов должна быть равна мощности генераторов, а их количество равно числу генераторов. В установках свыше 150 кВт к одному трансформатору могут быть подключены два генератора станции.

Если нагрузка потребителей местного района и собственных нужд станции превышает 25% установленной мощности генерато­ров, тогда целесообразна схема, имеющая сборные шины генератор­ного напряжения, которые служат для приема и распределения элек­троэнергии от всех генераторов электростанции. В этом случае для связи с системой предусматривается установка двух трансформато­ров суммарной мощностью, равной или несколько большей переда­ваемой в систему мощности. На рис. 5.5 приведена однолинейная схема электрических соединений ТЭС небольшой мощности.

Рис. 5.5. Принципиальная однолинейная схема электрических соединений станции:

1 - линии электропередачи (ЛЭП1 и ЛЭГ12); 2 - разъединители Р1...Р11;

3 - выключаюли В1...В6; 4 - сборные шины; 5 - предохранители Пр;

6- измерительный трансформатор напряжения ГН; 7 - измерительные

трансформаторы тока ТТ1.. .ТТ4; 8- силовые трансформаторы Tpl, Тр2;

9 - электрические генераторы Г1, Г2; 10- линии электропередачи собстиенных. нужд

Для генерации электроэнергии на тепловых электростанциях применяют синхронные генераторы трехфазного переменного тока, первичным двигателем которых могут служить двигатели внутрен­него сгорания, паровые и газовые турбины. Все современные тур­богенераторы имеют скорость вращения п = 3000 об/мин, число пар полюсов р = 1 и частоту f = n/60р = 50 Гц. Роторы генераторов выполняются с неявно выраженными полюсами в виде цельных по­ковок из легированной стали. В роторе имеются пазы, в которые укладывают обмотку возбуждения. Сердечник статора набирают из тонких стальных листов с пазами, в которые укладывают обмотку. Синхронные генераторы электростанций характеризуются сле­дующими номинальными параметрами: 1) напряжением (UH, кВ), которое устанавливается на 5% выше номинального напряжения электрических сетей; 2) мощностью, определяемой как длительно допустимая нагрузка по температуре нагрева обмоток и стали, кВА:

где Iн - номинальный ток статора, А;

3) частотой трехфазного переменного тока f = 50 Гц; 4) коэффици­ентом мощности cos φ = 0,8...0,9 и 5) коэффициентом полезного действия η = 96,5...98,2%.

Во время работы синхронного генератора его обмотки нагрева­ются. Для того чтобы температура нагрева не превышала допустимых значений, все турбогенераторы выполняются с искусственным охла­ждением. Существуют две системы охлаждения: 1) поверхностное, при котором охлаждающий газ (воздух или водород) с помощью вен­тилятора подается внутрь генератора через воздушный зазор и венти­ляционные каналы и не соприкасается с обмотками статора и ротора; 2) внутреннее, при котором охлаждающее вещество (газ или жид­кость) непосредственно соприкасается с проводниками обмоток ге­нератора. Отечественные турбогенераторы выпускаются с воздуш­ным, водяным и водородным охлаждением. Чем эффективней систе­ма охлаждения, тем больше может быть мощность генератора при тех же габаритах. Так, переход от воздушного охлаждения к водяно­му позволяет увеличить мощность генератора в 4 раза.

Для преобразования напряжения трехфазного электрического тока на электростанциях устанавливают силовые трансформаторы,

которые изготавливаются понижающими и повышающими напря­жение, двух- и трехобмоточными, трех- и однофазные. Наибольшее распространение получили трехфазные двухобмоточные трансфор­маторы, у которых мощность из первичной обмотки низкого напря­жения (НН) электромагнитным путем передается в обмотку высоко­го напряжения (ВН), при этом происходит увеличение напряжения. Повышение напряжения обеспечивает передачу электроэнергии на большие расстояния с минимальными потерями. Поэтому такие трансформаторы устанавливаются в линиях связи электростанций с энергосистемой и в блоках «генератор-трансформатор».

Конструкция силовых трансформаторов во многом определя­ется системой охлаждения обмоток. Большинство трансформаторов имеет масляное охлаждение - естественное, с дутьем и естествен­ной циркуляцией, с дутьем и принудительной циркуляцией масла через радиаторы, развитая поверхность которых обеспечивает эф­фективный отвод тепла. Чем эффективней система охлаждения, тем больше может быть мощность трансформатора. Трансформаторы характеризуются следующими параметрами: 1) номинальное на­пряжение первичной и вторичной обмотки - это напряжение между выводами при холостом ходе трансформатора; 2) номинальная мощность - это мощность нагрузки при номинальной температуре охлаждающей среды и максимальным превышением температуры обмоток над охлаждающей средой не более 65°С; 3) номинальный ток любой обмотки трансформатора определяется по ее номиналь­ной мощности и номинальному напряжению.

Кроме силовых трансформаторов, на электростанциях уста­навливаются понижающие трансформаторы для питания собствен­ных нужд (ТСН), а также измерительные трансформаторы тока (ТТ) и напряжения (ТН), которые служат для питания контрольно-измерительных приборов и схем релейной защиты и автоматики. Эти трансформаторы снижают напряжение, отделяют цепи высоко­го и низкого напряжения, что обеспечивает их безопасное обслу­живание.

Соединение аппаратов в электрической установке станции между собой осуществляется неизолированными проводами и ши­нами, изолированными проводами и кабелями. В распределитель­ных устройствах электростанций благодаря простоте монтажа, вы­сокой экономичности и надежности наибольшее распространение

получили жесткие и гибкие шины. В установках генераторного на­пряжения в зависимости от расчетного тока нагрузки применяют жесткие одно-, двух- и трехполосные алюминиевые шины. В от­крытых распределительных устройствах применяют гибкие шины, выполненные из алюминиевых или сталеалюминиевых проводов. Для крепления шин и изоляции их от заземленных частей приме­няются опорные, проходные и подвесные изоляторы, выполненные из электроизоляционного фарфора или специальных полимеров. Изоляторы для наружной установки имеют развитую ребристую поверхность, благодаря чему сохраняется необходимая электриче­ская прочность при атмосферных осадках.

Для соединения отдельных элементов на электростанциях ши­роко используют трех- и четырехжильные кабели. Кабели имеют токоведущие жилы (одно- или многопроволочные) из меди или алюминия, изолированные бумажными лентами, резиной или поли-винилхлоридной оболочкой. Кабели, как правило, имеют общую поясную изоляцию, оболочку или бронирование стальной лентой.

В электроустановках напряжением свыше 1000 В цепи при­соединяются к сборным шинам через разъединители и выключате­ли высокого напряжения. Выключатели служат для включения и отключения электрических цепей высокого напряжения под на­грузкой, а также для их отключения в аварийных режимах, напри­мер, при коротких замыканиях. Они должны за минимальное время отключить цепь при коротких замыканиях, чтобы не допустить раз­вития аварии. Поэтому основной характеристикой выключателя яв­ляется его отключающая способность, т. е. наибольший ток, кото­рый он способен надежно отключить. По конструкции и способу гашения электрической дуги различают воздушные, масляные бо­ковые, маломасляные, вакуумные и элегазовые выключатели. В се­тях 6-10 кВ наибольшее распространение получили маломасляные и вакуумные, а в сетях свыше 10 кВ - элегазовые выключатели. Контактная система каждой фазы выключателя вместе с гаситель­ной камерой, как правило, помещается в бак цилиндрической фор­мы с трансформаторным маслом или в специальную камеру, кото­рая заполняется газовой смесью или в ней создастся вакуум. Здесь масло, вакуум или газ служат для гашения электрической дуги за 0,015-0,025 с, что гарантирует сохранность оборудования и ЛЭП при возникновении аварийных ситуаций. Отключение выключателя

происходит под действием релейной защиты с помощью специаль­ного механизма. Достоинствами этих выключателей являются не­большой вес и размеры, надежность и удобство эксплуатации.

Кроме выключателей в цепях высокого напряжения устанав­ливаются разъединители, которые предназначены для отключения и включения цепей при отсутствии в них тока. По конструкции разъединители напоминают рубильники и в отключенном состоя­нии создают видимый разрыв цепи тока, обеспечивая тем самым безопасность проведения ремонтных работ в электроустановках свыше 1000 В. На отходящих линиях электропередачи, кроме шин­ных, устанавливаются и линейные разъединители, отключение кото­рых не позволяет подать напряжение к месту работы по линии элек­тропередачи. Для защиты линий электропередачи собственных нужд электростанций предназначены предохранители. Основным элемен­том предохранителя является плавкая вставка, включаемая в рассечку с защищаемой цепью, сгорание которой при перегрузке или коротком замыкании приводит к отключению поврежденного элемента. Для облегчения гашения дуги плавкая вставка выполняется из ряда па­раллельных проволок малого сечения или тонких медных пластин, помещенных в фарфоровый корпус и засыпанных кварцевым песком.

Бесперебойное снабжение потребителей может быть обеспе­чено только при правильно выбранной схеме электростанции. Ос­новными требованиями, предъявляемыми к схемам, являются на­дежность работы установок, гибкость схемы, удобство оператив­ных переключений и вывода в ремонт оборудования, что обеспечи­вает экономичность и надежность работы электростанций.

5.7. Расчет и выбор основного оборудования ТЭС

Представление о рабочем процессе и оборудовании, исполь­зуемом на ТЭС, дают принципиальные технологические схемы. В зависимости от назначения, существующих нагрузок, количества вырабатываемой энергии, вида и параметров теплоносителя произ­водится расчет тепловой схемы и выбор основного и вспомогатель­ного оборудования электростанции. Тепловые схемы станций раз­рабатываются в нескольких вариантах, окончательный выбор про­изводится на основании технико-экономических расчетов.

При проектировании и сопоставлении тепловых схем необхо­димо исходить из следующих положений. Одной из главных харак­теристик, определяющих выбор оборудования, является коэффици­ент теплофикации, отражающий степень использования регулируе­мых отборов турбин:

где QР.Т - расчетный отпуск тепла от турбин, Гкал/ч;

QР.М - расчетный максимально-часовой отпуск тепла Гкал/ч.

Для объединенной энергосистемы центра Российской Федера­ции α = 0,4...0,7. Следовательно, в среднем только 50% тепловой нагрузки целесообразно покрывать от ТЭС. Остальная нагрузка представляет так называемую пиковую нагрузку, не превышающую 5-10% годового объема потребления. Эту часть нагрузки рекомен­дуется покрывать пиковыми водогрейными котлами.

Совершенство любой ТЭЦ и целесообразность ее сооружения определяются, прежде всего, количеством произведенной электро­энергии по теплофикационному циклу. Соотношение объемов электроэнергии, вырабатываемой по теплофикационному и конден­сационному циклам, определяет величину основных технико-экономических показателей эксплуатации ТЭЦ. Поэтому для выбо­ра турбин используется метод энергетических характеристик. Для этого необходимо и достаточно знать обобщенные энергетические характеристики турбин. Расчеты, выполняемые с использованием этих характеристик, дают достаточную степень точности для про­ектных и технико-экономических расчетов.

Наиболее экономичными для покрытия тепловых нагрузок яв­ляется использование турбин с противодавлением, обеспечиваю­щих 100%-ю выработку электроэнергии по теплофикационному циклу с наименьшим расходом топлива Э = 170 г у.т./кВтч). Од­нако в чистом виде такую схему можно реализовать только при на­личии стабильной круглогодовой нагрузки. Так, для городских ТЭЦ выбор турбин с противодавлением производится исходя из летней средней часовой нагрузки горячего водоснабжения (QлГВС). Подбор турбин типа «Р» производят в следующем порядке:

• проверяют соответствие отбора теплоты из противодавления (QT) летней нагрузке ГВС с превышение на 10-15%:

где nРТ - количество турбин типа «Р»;

• находят значения фактической теплофикационной мощно­сти при QT = QлГВС:

• определяют расход тепла на турбину при заданной тепловой

нагрузке:

Оставшуюся часть тепловой нагрузки должны покрывать кон­денсационные турбины, имеющие регулируемые отборы пара.

Подбор турбин типа «Т» («ПТ») производят следующим об­разом:

• выбирают турбины максимальной мощности, так чтобы суммарный отпуск теплоты из теплофикационных отборов всех турбин был больше или равен оставшейся тепловой нагрузке:

• по энергетической характеристике выбранных турбин опре­деляется теплофикационная (NТ) и конденсационная мощность (NK):

где Qc - расход теплоты на собственные нужды станции.

Выработку пара в котельной можно определить, зная его па­раметры:

где i, iпв - соответственно энтальпия свежего пара и питательной воды.

Необходимая паропроизводительность одного котла опреде­ляется на блочных станциях без резервирования, на остальных с учетом одного резервного котла, т. е. путем деления выработка па­ра котельной (D) на число выбранных турбин (пT+1):

На пиковые водогрейные котлы ТЭЦ приходится половина тепловой нагрузки. Количество этих котлов выбирается путем де­ления этой нагрузки на теплопроизводительность водогрейных котлов, выпускаемых промышленностью. Количество водогрейных котлов должно быть не менее двух. Правильность выбора энерге­тических и водогрейных котлов на ТЭЦ проверяют по выражению (4.31). Окончательный выбор всего комплекта оборудования ТЭЦ делают на основании технико-экономического сравнения вариантов тепловых схем станции.

где Nном - номинальная мощность турбин типа «Т» («ПТ»), МВт, определяют расход тепла на турбины типа «Т» («ПТ»):

В этом случае теплопроизводительность котельной ТЭЦ долж­на составить

5.8. Технико-экономические показатели работы ТЭС

При проектировании систем энергоснабжения необходимо технико-экономическое сопоставление вариантов. Расчет технико-экономических показателей ТЭС выполняется в следующей после­довательности.

1. Определяют годовое производство теплоты для всех потреби­телей с учетом расходов на собственные нужды по формулам (3.31).

2. Рассчитывают годовой объем производства электроэнергии но энергетическим характеристикам турбин с учетом их мощности (Nном, NT, NK, МВт), количества (n), загрузки отборов (QT) (противо­давления) и располагаемого числа часов работы (h, ч/г):

• турбин типа «Р»:

Кс.н - коэффициент, учитывающий расходы теплоты на собст­венные нужды станции;

ηкот - коэффициент полезного действия котельной;

QЭ - годовой расход теплоты на выработку электроэнергии, которая определяется для каждого типа турбогенераторов по выражениям:

• для турбин типа «Р»

если это условие не выполняется, тогда уточняют максимально воз­можный годовой отпуск теплоты турбинами «Р»;

• турбин типа«Т»:

в том числе по теплофикационному циклу

для турбин типа «Т»

4. Определяют капитальные затраты в сооружение станции

• по конденсационному циклу

Суммарная выработка электроэнергии

3. Определяют годовые расходы условного топлива:

• на отпуск теплоты

где КTi - стоимость i-го турбогенератора;

KКj – стоимость j-го котлоагрегата;

nTi nКj - соответственно количество турбогенераторов i-го ти­па и котлоагрегатов j-го типа;

Kобщ - общестанционные затраты.

5. Определяют эксплуатационные расходы по составляющим:

• топливо

на выработку электроэнергии

вода

материалы

амортизация ооорудования и зданий

где Q - годовой расход теплоты па отопление, вентиляцию и го­рячее водоснабжение города, Гкал;

заработная плата

затраты на текущий ремонт

прочие расходы

здесь Цт, Цэ Цa, Цм - соответственно цены на топливо, электроэнер­гию, воду и материалы;

В, G, М - расход соответственно топлива, воды, материалов;

pi , рj - нормы амортизационных отчислений на полное восста­новление i-го оборудования и j-х зданий;

з - среднегодовая заработная плата;

т - штатный коэффициент, чел./кВт;

N - установленная мощность станции.

Основными проектными технико-экономическими показате­лями ТЭС являются:

• стоимость единицы установленной мощности, удельные ка­питальные вложения, руб./МВт:

• удельный расход условного топлива на отпущенную элек­троэнергию, г у.т./кВтч:

• удельный расход условного топлива на отпущенное тепло,



• себестоимость отпускаемой электроэнергии


г у.т./Гкал:

где SЭТ - стоимость топлива, израсходованного на выработку элек­троэнергии;

SЭ - ежегодные расходы, относимые на выработку электро­энергии;

Вэ, ВТ - расход топлива соответственно на выработку электро­энергии и тепла,

• себестоимость отпускаемой теплоты

где SТТ - стоимость топлива, израсходованного на выработку теп­лоты;

SТ - ежегодные расходы, относимые на выработку теплоты; ST = SSЭ.

Стоимость единицы установленной мощности определяется на основании сметно-финансовых расчетов. Предварительно капи­тальные вложения могут быть определены по укрупненным показа­телям сметной стоимости строительства ТЭС. Эксплуатационные расходы определяются по соответствующим сметам затрат на про­изводство электро- и теплоэнергии.