Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
44
Добавлен:
02.05.2014
Размер:
1.71 Mб
Скачать

Кодирование сигналов

Отображение логических каналов на физические каналы осуществляется через процессы кодирования и шифрования передаваемых сообщений.

Для защиты логических каналов от ошибок, которые имеют место в процессе передачи, используют три вида кодирования: блочное - для быстрого обнаружения ошибок при приеме; сверхточное - для исправления одиночных ошибок; перемежение - для преобразования пакетов ошибок в одиночные.

Для защиты каналов от подслушивания в каналах связи и управления применяется шифрование.

Для передачи сообщений по физическим каналам используется гауссовская частотная манипуляция с минимальным частотным сдвигом (GMSK).

Модуляция радиосигнала

В стандарте GSM применяется спектрально-эффективная гауссовская частотная манипуляция с минимальным частотным сдвигом (GMSK). Манипуляция называется "гауссовской" потому, что последовательность информационных бит до модулятора проходит через фильтр нижних частот (ФНЧ) с характеристикой Гаусса, что дает значительное уменьшение полосы частот излучаемого радиосигнала. Формирование GMSK радиосигнала осуществляется таким образом, что на интервале одного информационного бита фаза несущей изменяется на 90°. Это наименьшее возможное изменение фазы, распознаваемое при данном типе модуляции. Непрерывное изменение фазы синусоидального сигнала дает в результате частотную модуляцию с дискретным изменением частоты. Применение фильтра Гаусса позволяет при дискретном изменении частоты получить "гладкие переходы". В стандарте GSM применяется GMSK-модуляция с величиной нормированной полосы ВТ - 0,3, где В - ширина полосы фильтра по уровню минус 3 дБ, Т - длительность одного бита цифрового сообщения.     Основой формирователя GMSK-сигнала является квадратурный (1/Q) модулятор. Схема состоит из двух умножителей и одного сумматора. Задача этой схемы заключается в том, чтобы обеспечить непрерывную, очень точную фазовую модуляцию. Один умножитель изменяет амплитуду синусоидального, а второй косинусоидального колебания. Входной сигнал до умножителя разбивается на две квадратурные составляющие. Разложение происходит в двух обозначенных "sin" и "cos" блоках.

Модуляцию GMSK отличают следующие свойства, которые предпочтительны для подвижной связи:

  • постоянная по уровню огибающая, которая позволяет использовать эффективные передающие устройства с усилителями мощности в режиме класса С;

  • компактный спектр на выходе усилителя мощности передающего устройства, обеспечивающий низкий уровень внеполосного излучения;

  • хорошие характеристики помехоустойчивости канала связи.

КОДИРОВАНИЕ И ПЕРЕМЕЖЕНИЕ В КАНАЛАХ СВЯЗИ И УПРАВЛЕНИЯ СТАНДАРТА GSM

Общая структурная схема кодирования и перемежения в стандарте GSM

        Для защиты от ошибок в радиоканалах подвижной связи GSM PLMN используются сверточное и блочное кодирование с перемежением. Перемежение обеспечивает преобразование пакетов ошибок в одиночные. Сверточное кодирование является мощным средством борьбы с одиночными ошибками. Блочное кодирование, главным образом, используется для обнаружения нескорректированных ошибок .

        Блочный код (п, k, t) преобразует k информационных символов в п символов путем добавления символов четности (n-k), а также может корректировать t ошибок символов.

        Сверточные коды (СК) относятся к классу непрерывных помехоустойчивых кодов. Одной из основных характеристик СК является величина К, которая называется длиной кодового ограничения, и показывает, на какое максимальное число выходных символов влияет данный информационный символ. Так как сложность декодирования СК по наиболее выгодному, с точки зрения реализации, алгоритму Витерби возрастает экспоненциально с увеличением длины кодового ограничения, то типовые значения К малы и лежат в интервале 3-10. Другой недостаток СК заключается в том, что они не могут обнаруживать ошибки. Поэтому в стандарте GSM для внешнего обнаружения ошибок используется блочный код на основе сверточного кода (2, 1, 5) со скоростью r=1/2. Наибольший выигрыш СК обеспечивает только при одиночных (случайных) ошибках в канале.

        В каналах с замираниями, что имеет место в GSM PLMN, необходимо использовать СК совместно с перемежением.

        В GSM PLMN основные свойства речевых каналов и каналов управления значительно отличаются друг от друга. Для речевых каналов необходима связь в реальном масштабе времени с короткими задержками при сравнительно низких требованиях к вероятности ошибки в канале. Для каналов управления требуется абсолютная целостность данных и обнаружения ошибок, но допускается более длительное время передачи и задержки.

        В соответствии с общей структурой кадров в стандарте GSM передача информационных сообщений и сигналов управления осуществляется в нормальном временном интервале (NB) TDMA кадра. Структура NB (два пакета по 57 информационных бит каждый) требует, чтобы количество кодированных бит m, соответствующих n - некодированным битам в общей схеме кодирования и перемежения, равнялась бы целому числу, кратному 19. Затем эти биты зашифровываются и объединяются в I групп. Количество бит в этих группах также должно равняться 19, I групп переходят в I временных интервалов. Номер I называется степенью перемежения.

        В различных логических каналах используются различные сверточные коды, поскольку скорости передачи и требования по защите от ошибок также различны. Для упрощения механизмов кодирования и декодирования для формирования кодов используются только несколько полиномов. Это позволяет использовать сверточный код с одной скоростью г=1/2. Однако, чтобы выполнить требования формирования полноскоростного канала связи, а также привести в соответствие структуру размещения бит со структурой кадров необходима скорость г=244/456=0,535. Для выравнивания скорости в речевом канале до г=1/2 применяют прореживание, то есть периодический пропуск некоторых кодированных символов. Такая операция называется перфорированием, а формируемые таким образом коды называются перфорированными. При приеме декодер, зная алгоритм прореживания, интерполирует принимаемые данные.

    При передаче логического быстрого совмещенного канала управления FACCH перфорирование не используется.

Сверточное кодирование и перемежение в полноскоростном речевом канале

        Речевой кодек передает каждые 260 бит информационной последовательности со скоростью 13 кбит/с на схему канального кодирования. Первые 182 бита этого кадра, называемые в стандарте GSM битами 1 класса, защищаются с помощью слабого блочного кода для обнаружения ошибок в приемнике.

        Кодирование осуществляется следующим образом: биты класса 1 разделяются дополнительно на проверки на четность. Блочный код представляет собой укороченный систематический 50 бит класса 1а и 132 бита класса 1б. Биты класса 1а дополняются тремя битами циклический код (53, 50).

        В соответствии с принятым правилом формирования систематического кода, ключ Sw закрыт на время первых пяти-десяти тактовых импульсов, а информационные биты, поступающие на вход кодирующего устройства, одновременно поступают на блок переупорядочения и формирования бит проверки на четность. После пятидесяти тактовых импульсов переключатель Sw срабатывает и биты проверки на четность поступают из кодирующего устройства. На этой стадии проводится первый шаг перемежения. Биты с четными индексами собираются в первой части информационного слова, за которыми следуют три бита проверки на четность. Затем биты с нечетными индексами запоминаются в буферной памяти и переставляются. Далее следуют четыре нулевых бита, которые необходимы для работы кодера, формирующего код, исправляющий случайные ошибки в канале. После чего 189 бит класса 1 кодируются сверточным кодом (2,1,5) со скоростью г=1/2.

        После сверточного кодирования общая длина кадра составляет 2х189+78=456 бит. После этого кадр из 456 бит делится на восемь 57 битовых подблоков, которые подвергаются диагональному и внутрикадровому перемежению. Более точно подблоки В0 и В4 формируются в пакеты по 114 бит, которые являются результатом блочно-диагонального перемежения (DI/B). Биты В0 и В4 подблоков попарно перемежаются, образуя процесс внутрикадрового битового перемежения (IBI/B). В результирующий пакет включены два опережающих флага h1, h0, которые используются для классификации различных пакетов передачи.

Кодирование и перемежение в полноскоростном канале

передачи данных

        Для повышения эффективности применения сверточного кодирования в полноскоростных каналах передачи данных необходим длительный период перемежения. В этих каналах внутрикадровое перемежение (IВI/В) реализуется для степени перемежения I=19, что приводит к задержке передачи данных на 19х116=2204 бит. Если биты I-го пакета (временного интервала) до перемежения обозначить как С (Km), m=1...116, то схема перемежения, то есть позиции бит после перемежения, определяются следующей формулой:

I (К + j,j + 19t) = С (К, т) для всех К j = m mod 19, t = m mod 6.

©Орощук И.М.

Соседние файлы в папке Лекции по сетям ЭВМ