Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сергей А. Терехов - Лекции по теории и приложениям искусственных нейронных сетей.doc
Скачиваний:
189
Добавлен:
02.05.2014
Размер:
641.02 Кб
Скачать

Лекция 10. Неокогнитрон Фукушимы.

КОГНИТРОН и НЕОКОГНИТРОН Фукушимы. Правила обучения. Инвариантное распознавание образов НЕОКОГНИТРОНОМ.

В этой лекции мы переходим к рассмотрению некоторых относительно новых современных архитектур, среди которых прежде всего следует отметить НЕОКОГНИТРОН и его модификации. В следующей лекции будут обсуждаться варианты сетей, построенных на теории адаптивного резонанса (АРТ).

Когнитрон: самоорганизующаяся многослойная нейросеть.

Создание КОГНИТРОНА (K.Fukushima, 1975) явилось плодом синтеза усилий нейрофизиологов и психологов, а также специалистов в области нейрокибернетики, совместно занятых изучением системы восприятия человека. Данная нейронная сеть одновременно является как моделью процессов восприятия на микроуровне, так и вычислительной системой, применяющейся для технических задач распознавания образов.

КОГНИТРОН состоит из иерархически связанных слоев нейронов двух типов - тормозящих и возбуждающих. Состояние возбуждения каждого нейрона определяется суммой его тормозящих и возбуждающих входов. Синаптические связи идут от нейронов одного слоя (далее слоя 1) к следующему (слою 2). Относительно данной синаптической связи соотвествующий нейрон слоя 1 является пресинаптическим, а нейрон второго слоя - постсинаптическим. Постсинаптические нейроны связаны не со всеми нейронами 1-го слоя, а лишь с теми, которые принадлежат их локальной области связей. Области связей близких друг к другу постсинаптических нейронов перекрываются, поэтому активность данного пресинаптического нейрона будет сказываться на все более расширяющейся области постсинаптических нейронов следующих слоев иерархии.

Вход возбуждающего постсинаптического нейрона (на Рис. 10.1 - нейрон i) определяется отношением суммыEего возбуждающих входов (a1, a2 и a3) к суммеIтормозящих входов (b1 и вход от нейрона X):

где u - возбуждающие входы с весамиa,v-тормозящие входы с весамиb. Все веса имеют положительные значения. По значениям E и I вычисляется суммарное воздействие наi-й нейрон:neti =((1+E)/(1+I))-1. Его выходная активностьuiзатем устанавливается равнойneti, еслиneti> 0. В противном случае выход устанавливается равным нулю. Анализ формулы для суммарного воздействия показывает, что при малом торможении I оно равно разности возбуждающего и тормозящего сигналов. В случае же когда оба эти сигнала велики, воздействие ограничивается отношением. Такие особенности реакции соответствуют реакциям биологических нейронов, способных работать в широком диапазоне воздействий.

Рис. 10.1. Постсинаптический нейрон iслоя 2 связан с тремя нейронами в области связей (1,2 и 3) слоя 1 и двумя тормозящими нейронами (показаны темным цветом). Тормозящий нейронX реализует латеральное торможение в области конкуренции нейронаi.

Пресинаптические тормозящие нейроны имеют ту же область связей, что и рассматриваемый возбуждающий постсинаптический нейрон i. При этом веса таких тормозящих нейронов (c1, c2 и c3) являются заданными и не изменяются при обучении. Их сумма равна единице, таким образом, выход тормозного пресинаптического нейрона равен средней активности возбуждающих пресинаптических нейронов в области связей:

Обучение весов возбуждающих нейронов происходит по принципу "победитель забирает все" в области конкуренции - некоторой окрестности данного возбуждающего нейрона. На данном шаге модифицируются только весаaiнейрона с максимальным возбуждением:

где cj- тормозящий вес связи нейронаjв первом слое,uj- состояние его возбуждения,q- коэффициент обучения. Веса тормозящего нейронаiвторого слоя модифицируются пропорционально отношению суммы возбуждающих входов к сумме тормозящих входов:

В случае, когда победителя в области конкуренции (на слое 2) нет, как это имеет место, например в начале обучения, веса подстраиваются по другим формулам:

Данная процедура обучения приводит к дальнейшему росту возбуждающих связей активных нейронов и торможению пассивных. При этом веса каждого из нейронов в слое 2 настраиваются на некоторый образ, часто пред'являемый при обучении. Новое пред'явление этого образа вызовет высокий уровень возбуждения соответсвующего нейрона, при появлении же других образов, его активность будет малой и будет подавлена при латеральном торможении.

Веса нейрона X, осуществляющего латеральное торможение в области конкуренции, являются немодифицируемыми, их сумма равна единице. При этом во втором слое выполняются итерации, аналогичные конкурентным итерациям в сети Липпмана-Хемминга, рассмотренной нами в 7 лекции.

Отметим, что перекрывающиеся области конкуренции близких нейронов второго слоя содержат относительно небольшое число других нейронов, поэтому конкретный нейрон-победитель не может осуществить торможение всего второго слоя. Следовательно, в конкурентной борьбе могут выиграть несколько нейронов второго слоя, обеспечивая более полную и надежную переработку информации.

В целом КОГНИТРОН представляет собой иерархию слоев, последовательно связанных друг с другом, как было рассмотрено выше для пары слой 1 - слой 2. При этом нейроны слоя образуют не одномерную цепочку, как на Рис. 10.1, а покрывают плоскость, аналогично слоистому строению зрительной коры человека. Каждый слой реализует свой уровень обобщения информации. Входные слои чувствительны к отдельным элементарным структурам, например, линиям определенной ориентации или цвета. Последующие слои реагируют уже на более сложные обобщенные образы. В самом верхнем уровне иерархии активные нейроны определяют результат работы сети - узнавание определенного образа. Для каждого в значительной степени нового образа картинка активности выходного слоя будет уникальной. При этом она сохранится и при пред'явлении искаженной или зашумленной версии этого образа. Таким образом, обработка информации КОГНИТРОНОМ происходит с формированием ассоциаций и обобщений.

Автором КОГНИТРОНА Фукушимой эта сеть применялась для оптического распознавания символов - арабских цифр. В экспериментах использовалась сеть с 4-мя слоями нейронов, упорядоченными в матрицы 12 x 12 с квадратной областью связей каждого нейрона размером 5 x 5 и областью конкуренции в форме ромба с высотой и шириной 5 нейронов. Параметры обучения были равны q=16, q'=2. В результате было получено успешное обучение системы на пяти образах цифр (аналогичных картинкам с буквами, которые мы рассматривали для сети Хопфилда), при этом потребовалось около 20 циклов обучения для каждой картинки.

Рис. 10.2. Смещенные друг относительно друга "одинаковые" образы требуют для установления их "одинаковости" инвариантного относительно произвольных сдвигов характера распознавания.

Несмотря на успешные применения и многочисленные достоинства, как то соответствие нейроструктуры и механизмов обучения биологическим моделям, параллельность и иерархичность обработки информации, распределенность и ассоциативность памяти и др., КОГНИТРОН имеет и свои недостатки. По-видимому, главным из них является не способность этой сети распознавать смещенные или повернутые относительно их исходного положения образы. Так например, две картинки на Рис. 10.2 с точки зрения человека несомненно являются образами одной и той же цифры 5, однако КОГНИТРОН не в состоянии уловить это сходство.

О распознавании образов независимо от их положения, ориентации, а иногда и размера и других деформации, говорят как об инвариантномотносительно соотвествующих преобразований распознавании. Дальнейшие исследования группы под руководством К.Фукушимы привели к развитию КОГНИТРОНА и разработке новой нейросетевой парадигмы - НЕОКОГНИТРОНА, который способен к инвариантному распознаванию.