Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

колды экз

.pdf
Скачиваний:
95
Добавлен:
10.11.2019
Размер:
1.57 Mб
Скачать

Для адсорбентов с переходными порами характерна изотерма адсорбции с петлей капиллярно-конденсационного гистерезиса. Адсорбции соответствует нижняя кривая, а десорбции — верхняя. При малых давлениях, когда не происходит капиллярная конденсация, гистерезиса не наблюдается. Начало появления гистерезиса зависит от природы адсорбента и адсорбата.

Конденсация на стенках цилиндрической поры приводит к уменьшению диаметра поры, что вызывает ее мгновенное заполнение при давлении, отвечающем началу конденсации. На концах поры образуются сферические мениски жидкости. Десорбция может начаться только при давлении, соответствующем радиусам кривизны этих менисков. Таким образом, опорожнение капилляра происходит при меньшем давлении, чем его заполнение. Этим объясняется появление петли капиллярно-конденсационного гистерезиса.

Капиллярная конденсация описывается уравнением Кельвина, в которое входит радиус кривизны мениска, и это позволяет использовать его для расчета функции распределения пор по размерам.

Метод расчета функций распределения частиц (пор) по размерам заключается в построении интегральных и дифференциальных кривых распределения.

Для пористых тел принято характеризовать распределение пор по их радиусам, поэтому интегральная кривая распределения выражает зависимость общего объема пор от их радиуса:

.

Другой функцией распределения для данного пористого тела является зависимость f(rп) или dVп/drп от rп, которая называется дифференциальной кривой распределения. Она более четко и наглядно характеризует полидисперсность системы.

Для получения кривых распределения по методу капиллярной конденсации используют десорбционную ветвь изотермы адсорбции, так как для всех без исключения пор она соответствует сферическим менискам, радиусы которых принимают за радиусы пор.

13.Потенциальная теория адсорбции Поляни. Адсорбционный потенциал. Характеристическая кривая адсорбции. Температурная инвариантность и афинность характеристических кривых.

Потенциальная теория Поляни была предложена для термодинамического описания полимолекулярной адсорбции. Она устанавливает связь величины адсорбции с изменением давления пара (газа) и с теплотами адсорбции, исходя из объема адсорбционного пространства. Наиболее удачно теория Поляни предсказывает зависимость величины адсорбции от температуры.

Модель адсорбции в теории Поляни предполагает, что адсорбат ведет себя термодинамически как однокомпонентная система, находящаяся в потенциальном поле поверхностных сил адсорбента, который химически инертен. Теория Поляни принимает, что в адсорбционном пространстве действуют только дисперсионные силы, которые, во-первых, аддитивны, во-вторых, не зависят от температуры.

Введено допущение, что практически все адсорбированное вещество находится на поверхности в жидком состоянии. Это допущение в большой мере соответствует состоянию адсорбата в порах пористых адсорбентов. Именно поэтому подход, используемый в теории Поляни, оказался более пригодным для описания адсорбции на пористых адсорбентах, в порах которых происходит конденсация паров.

За меру интенсивности адсорбционного взаимодействия принят адсорбционный потенциал

— работа переноса 1 моль пара, находящегося в равновесии с жидким адсорбатом в отсутствие адсорбента (давление ps) в равновесную с адсорбентом паровую фазу (давление

р): .

Этот потенциал характеризует работу против действия адсорбционных сил. Каждой точке изотермы адсорбции соответствуют определенные значения А и p/ps, которые позволяют получить значения V и ε, т. е. найти зависимости адсорбционного потенциала от объема адсорбата на адсорбенте — потенциальную кривую адсорбции.

Т

ак как дисперсионные силы не зависят от температуры, то от температуры не должна зависеть и форма потенциальной кривой адсорбции, что экспериментально подтверждается во многих случаях. Экспериментальные точки при разных температурах ложатся на одну и ту же кривую ε =f(V), которую поэтому называют характеристической кривой:

,т. е. адсорбционный потенциал при постоянном объеме жидкого адсорбата на адсорбенте (постоянной степени объемного заполнения) не зависит от температуры (температурная инвариантность характеристической кривой).

Важная особенность потенциальных кривых адсорбции, заключается в том, что характеристические кривые для одного и того же адсорбента и разных адсорбатов при всех значениях объемов адсорбата в поверхностном слое находятся в постоянном соотношении β:

Коэффициент β был назван коэффициентом аффинности, Отсюда следует, что, зная характеристическую кривую для одного адсорбата и коэффициент аффинности для другого адсорбата по отношению к первому, можно вычислить изотерму адсорбции второго адсорбата на том же адсорбенте.

14.Особенности адсорбции на микропористых адсорбентах. Обобщенное уравнение теории Дубинина (теория объемного заполнения микропор), частные случаи этого уравнения (уравнение Дубинина-Радушкевича). Расчет общего объема микропор по изотерме адсорбции.

На первый взгляд может показаться, что закономерности заполнения микропор должны следовать теории капиллярной конденсации. Однако размеры микропор таковы, что в них происходит перекрытие полей поверхностных сил противоположных стенок пор, что значительно повышает энергию адсорбции и искажает профиль мениска конденсата в порах, соответствующий уравнению Кельвина, т. е. приводит к дополнительному всасыванию адсорбата, резкому увеличению адсорбционного потенциала.

Особенности адсорбции на микропористых телах проявляются в их избирательном действии. Избирательность, или селективность, микропористых адсорбентов существенно выше, чем переходнопористых, благодаря тому, что большинство адсорбированных молекул взаимодействуют непосредственно с поверхностью адсорбента. В более крупных порах такое взаимодействие характерно только для первого слоя. В последующих же слоях

взаимодействие не зависит от природы·, адсорбента, а определяется только природой адсорбата. Кроме этой особенности у микропор может проявляться так называемый ситовой эффект, заключающийся в том, что адсорбироваться могут только те молекулы, размеры которых меньше размеров микропор или равны им, в связи с чем все микропористые адсорбенты (не только цеолиты) называют молекулярными ситами.

Переходя к количественным соотношениям теории объемного заполнения пор, необходимо отметить, что в ее основе лежат представления потенциальной теории Поляни, предложенной первоначально для описания полимолекулярной адсорбции, исходя из двух основных параметров: адсорбционного потенциала ε, адсорбционного объема V и двух положений:

Степень заполнения адсорбента можно· представить как отношение величины адсорбции А к максимальной адсорбции А0, или как отношение заполненного объема V к предельному объему адсорбционного пространства V0, приведенных к нормальным условиям (давлению и температуре).

или Эти уравнения являются общими уравнениями теории объемного заполнения микропор.

Заменив адсорбционный потенциал на его выражение через давление пара (ε = RTln(p/ps)) и прологарифмировав общее уравнение теории объемного заполнения микропор, получим:

Для большинства активных углей n=2, тогда полученное уравнение переходит в уравнение Дубинина— Радушкевича:

Построение прямой в координатах дает возможности найти константы этого уравнения A0 и E. Объем микропор Vп рассчитывают по уравнениям

15.+16 особенности адсорбции ПАВ на границе раздела раствор-воздух. Влияние строения молекул ПАВ на поверхностную активность(правило Дюкле-Траубе). Зависимость поверхностно натяжения растворов от концентраций ПАВ при соблюдении закона Генри и уравнения Ленгмюра (вывод уравнений). Поверхностное давление адсорбционной пленки ПАВ. Уравнение состояния двумерного газа для адсорбционной пленки(вывод);различные агрегатные состояния адсорбционных пленок. Весы Ленмюра и определение размеров молекул ПАВ.

Поверхностно-активные вещества (ПАВ), молекулы которых имеют дифильное строение и включают большой углеводородный радикал, отличаются высокой поверхностной активностью по отношению к воде, что отражает сильную зависимость поверхностного натяжения водного раствора ПАВ от их концентрации. Большие значения поверхностной активности предполагают пренебрежимо малые концентрации ПАВ в объеме раствора по сравнению с концентрацией их в поверхностном слое, т. е. с величиной их адсорбции на

границе раствор — воздух. Подобная зависимость может обнаруживаться и в растворах других веществ на границе с жидкостью или твердым телом, например при специфическом взаимодействии с поверхностью. Отмеченная особенность позволяет пренебречь разницей между величиной адсорбции А и величиной гиббсовской адсорбции Г, т. е. Г~А. Из этого соотношения следует, что для растворов ПАВ все уравнения адсорбции, включающие величину адсорбции А, будут также справедливы, если заменить А на Г. Одним из таких уравнений является выражение закона Генри, который характеризует адсорбцию при малых концентрациях.

Применительно к адсорбции неионогенных (недиссоциирующих) ПАВ закон Генри

запишется так: ] В такой записи закон Генри можно сопоставить с адсорбционным уравнением Гиббса:

]

]

Разделим переменные и проведя интегрирование полученного уравнения в пределах от σ0 (поверхностное натяжение чистого растворителя) до σ и соответственно от с = 0 до с.

Получим .

Таким образом, в области действия закона Генри поверхностное натяжение линейно уменьшается с увеличением концентрации неионогенного ПАВ.

При адсорбции или растекании вещества на поверхности образуется поверхностная (адсорбционная) пленка этого вещества. Полученные ранее уравнения изотерм поверхностного натяжения для ПАВ позволяют перейти к уравнениям состояния поверхностных пленок. При очень малых концентрациях ПАВ распределение вещества между раствором и поверхностным слоем описывается законом Генри, а зависимость поверхностного натяжения от концентрации следует указанному выше соотношению. Если в этом соотношении обозначить и учесть адсорбционное уравнение, то

получим: Так как величина А обозначает число молей адсорбированного вещества, приходящееся на

единицу поверхности, а обратная ей величина Sм=l/A выражает поверхность, на которой распределен 1 моль адсорбированного вещества, то полученному соотношению можно

придать вид: Это уравнение аналогично, уравнению состояния идеального газа. Различие состоит в том,

что вместо объема 1 моль газа здесь выступает поверхность, занимаемая 1 моль ПАВ, а

вместо давления газа — разность поверхностных натяжений, которая получила название давления двухмерного газа, или двухмерного давления. В соответствии с этим полученное соотношение называют уравнением состояния идеального двухмерного газа.

В зависимости от условий, природы ПАВ и подложки образуются поверхностные пленки, которые по свойствам подобны веществам в трех агрегатных состояниях — газообразном, жидком и твердом.

Как известно, 1 мономолекулярный слой (пленка) может образоваться только в том случае, если работа адгезии больше работы когезии растекающегося вещества (коэффициент растекания имеет положительный знак). Если подложка жидкая и наблюдается взаимное насыщений фаз, растекание может перейти в нерастекание — пленка соберется в линзу.

Возможность существования поверхностных пленок в различных агрегатных состояниях впервые было наглядно показано Ленгмюром. Он специально сконструировал весы для измерения поверхностного (двухмерного) давления. Принцип метода измерения состоит в следующем. В кювету 1 наливают до краев подлежащую жидкость и на ее поверхность между неподвижной 2 и подвижной 3 планками наносят вещество, образующее мономолекулярную пленку. В процессе теплового движения молекулы вещества ударяются о планку и создают давление, которое можно уравновесить и измерить с помощью разновесов в чашечке 4. Передвигая планку 3, можно изменять площадь, занимаемую молекулами пленки, и тем самым изменять ее двухмерное давление.

По зависимости поверхностного давления пленки от площади поверхности, приходящейся на 1 молекулу (1 моль) вещества пленки, можно судить о состоянии пленки.

Резкое увеличение поверхностного давления при сжатии пленки отвечает образованию сплошного мономолекул яркого слоя, в котором молекулы плотно прижаты друг к другу. Если площадь sм0, на которой размещен таким образом 1 моль вещества, разделить на число Авогадро, то получим площадь, непосредственно занимаемую одной молекулой:

Есть несколько определений поверхностного натяжения:

1.Поверхностное натяжение – работа образования новой поверхности в изотермическом процессе

2.Поверхностное натяжение – сила, действующая по периметру данной поверхности, отнесенная к единице длины.

3.Поверхностное натяжение – работа переноса молекул из объема тела на поверхность.

4.Термодинамическое определение поверхностного натяжения:

Термодинамическое определение поверхностного натяжения вытекает из объединенного уравнения первого и второго начал термодинамики. Запишем его для гетерогенной системы относительно изменения внутренней энергии U:

]

При постоянных S, V, ni и q имеем:

]

т. е. поверхностное натяжение есть частная производная от внутренней энергии по площади поверхности раздела фаз при постоянных энтропии, объеме, числе молей компонентов и заряде.

Так как объединенное уравнение первого и второго начал термодинамики может быть записано и относительно других термодинамических потенциалов, а именно энергии Гиббса G, энергии Гельмгольца F и энтальпии Я, то при соответствующих постоянных параметрах получим:

]

Таким образом, поверхностное натяжение есть частная производная от любого термодинамического потенциала по площади межфазной поверхности при постоянных соответствующих параметрах.

Физический смысл поверхностного натяжения можно представить так: поверхностное натяжение на границе жидкости с газовой фазой – работа, расходуемая на обратимый разрыв столбика этой жидкости с поперечным сечением в 0,5 единицы площади, так как при разрыве образуется новая поверхность, равная единице площади.

Чем сильнее межмолекулярные связи в данном теле, тем больше его поверхностное натяжение на границе с газовой фазой.

В соответствии со вторым началом термодинамики избыточная энтропия равна

]

Учитывая, что Gs = σ, получим следующее выражение:

]

Из этого уравнения следует, что внутренняя энергия поверхности складывается из энергии Гиббса и теплоты образования поверхности. Для индивидуальных веществ теплота qs всегда положительна, так как при образовании поверхности теплота поглощается. Из уравнения объединенных первого и второго начала термодинамики при постоянстве всех параметров, кроме температуры, имеем:

]

Подставлям это выражение в полученные уравнения:

]

Это уравнение называется уравнением Гиббса — Гельмгольца. Оно связывает полную поверхностную энергию с энергией Гиббса (поверхностным натяжением). Из этого

уравнения следует, что для определения полной поверхностной энергии необходимо знать зависимость поверхностного натяжения от температуры. Для индивидуальных веществ теплота qs всегда положительна, а это значит, что температурный коэффициент поверхностного натяжения отрицателен:

]

Таким образом, поверхностное натяжение индивидуальных веществ на границе с газом (воздухом) снижается с повышением температуры. Для большинства неполярных жидкостей эта зависимость линейная.

17.Ионообменная адсорбция. Природные и синтетические иониты. Классификация ионитов по кислотно-основным свойствам. Полная и динамическая обменные емкости. Константа растворения ионного обмена, уравнение Никольского.

Ионообменная адсорбция – это процесс, при котором твердый адсорбент обменивает свои ионы на ионы того же знака из раствора в эквивалентных количествах.

Первые сообщения об ионообменной адсорбции были сделаны в 1850 году независимо друг от друга английскими учеными Томпсоном и Уэем. Изучая способность почв к поглощению удобрений и их вымыванию дождем, они обнаружили обмен ионами между почвой и водными растворами солей.

Кособенностям ионного обмена относятся: а) высокая специфичность, т.е. к обмену способны только определенные ионы; б) меньшая скорость, чем у молекулярной адсорбции; в) возможность изменения рН среды; г) процесс не всегда обратим.

Адсорбенты, на которых протекает ионообменная адсорбция, называются ионитами или ионообменниками. Они бывают как природного происхождения (почвы, цеолиты), так и синтетически полученные. Иониты могут иметь кислотный, основной или амфотерный характер. Вещества кислотного характера обмениваются с раствором катионами и называются катионитами. Основные сорбенты - аниониты - отдают в раствор анионы, замещая их анионами раствора. Амфотерные иониты содержат и катионные, и анионные обмениваемые группы, т.е. они могут одновременно сорбировать и катионы, и анионы.

Кприродным неорганическим катионитам относятся кристаллические силикаты (шабазит, глауконит и др.), анионитам – некоторые минералы, например, апатит. Природными ионитами органического происхождения являются, например, содержащиеся в почве гуминовые кислоты – высокомолекулярные соединения, обладающие амфотерными свойствами. Природные иониты не нашли широкого практического применения, т.к. имеют ряд недостатков, в частности, они химически нестойки и не обладают достаточной механической прочностью.иониты на основе органических смол – синтетические ионообменные смолы. Неорганические иониты имеют кристаллическую структуру, способные к обмену ионы содержатся в их решетках. Органические полимерные ионообменники имеют пространственную структуру, на которой расположены ионогенные группы, определяющие свойства ионитов (Рис. 13). В катионитах такими группами могут быть - СООН, - SО3Н, - ОН, - SiOН, обменивающие ион Н+ на катионы раствора.

R-SO3-H+ + Na+Cl- R-SO3-Na+ + H+Cl-

где R -органическая полимерная матрица. В анионитах содержатся активные группы: -NH2, NH, N, -N(CH3)3Cl. Анионообменники применяют как в ОН- форме, так и в хлоридной, карбонатной и других.

ROH- + Na+Cl- RCl- + Na+OH-

Основными достоинствами синтетических ионообменников являются химическая стойкость, механическая прочность, разнообразие кислотно-основных свойств, большая обменная емкость. Обменную емкость выражают в молях или миллимолях извлекаемых из раствора ионов в расчете на единицу массы сухого ионита. После проведения сорбции иониты можно регенерировать, обрабатывая катиониты кислотой, аниониты - щелочью.

От вида функциональных групп, входящих в состав ионита, зависит, насколько сильно выражены кислотные или основные его свойства. В зависимости от этого различают четыре группы ионитов.

1. Сильнокислотные катиониты имеют в качестве функциональных групп сульфогруппу – SO3!и фосфорную группу –РО3!. Они используются в кислых, нейтральных и щелочных средах. Это сульфокислотные катиониты полистирольного типа марок КУ-2, КУ-23, СДВ, СБС. К фосфорнокислым относятся катиониты марок КФ-2, КФ-11.Катиониты полистирольного типа выпускаются в виде сферических гранул и имеют либо янтарную, либо светло-желтую окраску.

Катиониты фенольного типа, например, КУ-1, окрашены в черный цвет, их частицы имеют неправильную форму. Такие катиониты бифункциональны, т.е. наряду с группой –SO3! имеют в своем составе группу –ОН!.Преимущество полистирольных катионитов – их монофункциональность, высокая обменная емкость, высокая термическая устойчивость. 2. Слабокислотные катиониты имеют в качестве функцио-нальных групп карбоксильные группы – СОО!, – ОН!. Это катиониты марок КБ-1, КБ-4, КФУ-1. Катиониты с

карбоксильными группами окрашены в белый или светло-зеленый цвет. Важным свойством подобных катионитов является их высокое сродство к иону водорода. Даже небольшого количества разбавленной соляной кислоты достаточно для полной регенерации катионита. Слабокислотные катиониты работают в щелочных и нейтральных средах.

3.Сильноосновные (высокоосновные) аниониты имеют в качестве функциональных групп четвертичные аммониевые группы. Это аниониты марок АВ-16, АВ-17, АВ-18, АВ-20. Они могут применяться для хроматографирования в кислых, щелочных и нейтральных средах.

Сильноосновные аниониты имеют желтую или светло-желтую окраску. Они часто используются для разделения большинства ионов металлов. Ион щелочных, щелочноземельных, редкоземельных элементов, алюминия, никеля, меди и др. не сорбируются анионитами при любой концентрации соляной кислоты. Остальные ионы металлов в пределах концентрации НСl от 0,1 до 12 моль/л сорбируются анионитами в различной степени, т.к. образуют анионные хлоркомплексы, имеющие сильно отличающиеся константы нестойкости.

4.Слабоосновные (низкоосновные) аниониты в качестве функциональных групп имеют аминогруппы разной степени замещения:

– NH2+,= NH+, N+. Это аниониты марок АН-2Ф,АН-1, АН-23 и др.Они работают в кислых и нейтральных средах. Анионит ЭДЭ-10П содержит несколько активных аминогрупп вторичного, третичного и четвертичного аммониевых оснований. Поэтому он обладает и слабоосновными, и в некоторой степени сильноосновными свойствами.

Обменная емкость Для количественной характеристики ионообменных и сорбционных свойств ионитов

применяют следующие величины: полная, динамическая и рабочая обменная емкость. Полная обменная емкость (ПОЕ) определяется числом функциональных групп, способных к ионному обмену, в единице массы воздушно-сухого или набухшего ионита и выражается в мг-экв/г или мг-экв/л. Она является постоянной величиной, которую указывают в паспорте ионита, и не зависит от концентрации или природы обменивающегося иона. ПОЕ может изменяться (уменьшаться) из-за термического, химического или радиационного воздействия. В реальных условиях эксплуатации ПОЕ уменьшается со временем вследствие старения матрицы ионита, необратимого поглощения ионов-отравителей (органики, железа и т. п.), которые блокируют функциональные группы.

Равновесная (статическая) обменная емкость зависит от концентрации ионов в воде, рН и отношения объемов ионита и раствора при измерениях. Необходима для проведения расчетов технологических процессов.

Динамическая обменная емкость (ДОЕ) – важнейший показатель в процессах водоподготовки. В реальных условиях многократного применения ионита в цикле сорбциирегенерации обменная емкость используется не полностью, а лишь частично. Степень использования определяется методом регенерации и расходом регенерирующего агента, временем контакта ионита с водой и с регенерирующим агентом, концентрацией солей, рН, конструкцией и гидродинамикой используемого аппарата. На рисунке показано, что процесс очистки воды прекращают при определенной концентрации лимитирующего иона, как правило, задолго до полного насыщения ионита.

Количество поглощенных при этом ионов, соответствующее площади прямоугольника А, отнесенное к объему ионита, и будет ДОЕ. Количество поглощенных ионов, соответствующее полному насыщению, когда проскок равен 1, соответствующее сумме ДОЕ и площади заштрихованной фигуры над S -образной кривой, называют полной динамической обменной емкостью (ПДОЕ). В типовых процессах водоподготовки ДОЕ обычно не превышает 0,4–0,7 ПОЕ.

Рис.Сравнение полной динамической ПДОЕ и динамической обменной емкости ДОЕ. Заштрихованная площадь А соответствует ДОЕ, а вся площадь над кривой с учетом проскока солей – ПДОЕ

Ионит, обменивающийся ионами Н+ на катионы, называется катионитом, а ионит, обменивающий ОН- на анион, называется анионитом.

Ионообменное равновесие - равновесие, установившееся по истечении некоторого времени в ионите между концентрациями ионов и раствора электролита.

Ионообменную реакцию можно представить уравнением

,

Соседние файлы в предмете Коллоидная химия