Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВЫЧ_мат_ГЛАВНАЯ.doc
Скачиваний:
1
Добавлен:
09.11.2019
Размер:
2.6 Mб
Скачать

Раздел 5

Численное интегрирование

Краткое введение Задача приближенного вычисления определенного интеграла (на отрезке или по многомерной области) фактически разбивается на две самостоятельные подзадачи. Первая — это интегрирование таблично заданной функции (полученной, например, при проведении лабораторного эксперимента). В таком случае информация о гладкости подынтегральной функции отсутствует, весьма ограничены возможности в выборе узлов интегрирования. Для этой задачи наиболее эффективными будут квадратурные формулы интерполяционного типа и правило Рунге оценки погрешности.

Вторая задача — подсчет значения определенного интеграла от известной функции. При этом самая ресурсоемкая операция с точки зрения вычислений — подсчет значения функции. Желательно построить численный метод, позволяющий получать как можно более высокую точность при наименьшем количестве вычислений. При этом выбор узлов квадратурных формул целиком определяется исследователем. В этом случае наиболее эффективными окажутся квадратурные формулы типа Гаусса.

Квадратурные формулы интерполяционного типа (формулы Ньютона - Котеса)

Геометрический смысл определенного интеграла функции f(x) заключается в площади фигуры, образованной этой функцией и осью OX. Поэтому самый простой способ посчитать определенный интеграл от "хорошей" (т.е. гладкой) функции - применить формулу прямоугольников или трапеций. C помощью этих формул площадь упомянутой искомой фигуры подсчитывается как сумма элементарных прямоугольников (или трапеций), множеством которых заменяется подынтегральная функция f(x).

Для подсчета интеграла интервал интегрирования [a,b] разбивается на n равных частей (отрезков) точками (h – шаг разбиения . При этом точка xi может выбираться, к примеру, как начало каждого элементарного отрезка, либо как его центр. Значение функции f(x) в точках разбиения хi обозначим через уi . Непрерывная подынтегральная функция заменяется сплайном – кусочно-полиномиальной функцией S(x), аппроксимирующей данную функцию. Очевидно, что при стремлении h к 0, множество прямоугольников (или трапеций) стремится к искомой фигуре, образованной подынтегральной функцией, а численный результат - к истинному значению интеграла.

Интегрируя функцию S(x) на отрезке [a,b], будем получать в зависимости от S(x) следующие квадратурные формулы:

Формула прямоугольников

Если на каждой части [xi-1,…,xi] (i=1,2,…,n) деления отрезка [a,b] функцию f(x) заменить функцией, принимающей постоянное значение, равное, например, значению функции f(x) в серединной точке i-й части , т.е на каждой части отрезка функция имеет вид прямоугольника с шириной   и высотой f(xi), то функция S(x) будет иметь ступенчатый вид:

, х Є [xi-1,…,xi], (i=1,2,…,n).

Отсюда получаем квадратурную формулу прямоугольников:

(1)

Конечно, для константы приведенная выше формула точна — говорят, что построенная квадратурная формула будет точна на полиномах степени 0. Легко можно доказать, что формула прямоугольников с центральной точкой будет давать точное значение и в случае линейной функции. Для всех других функций эту формулу будем рассматривать как приближенную.

Иллюстрация метода приведена на рис. 5.1

Рис. 5.1 Иллюстрация метода прямоугольников

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.