Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-95 почти готово.docx
Скачиваний:
16
Добавлен:
27.09.2019
Размер:
907 Кб
Скачать

5. Информационная система

Информационная система (ИС) является системой информационного обслуживания работников управленческих служб и выполняет технологические функции по накоплению, хранению, передаче и обработке информации. Она складывается, формируется и функционирует в регламенте, определенном методами и структурой управленческой деятельности, принятой на конкретном экономическом объекте, реализует цели и задачи, стоящие перед ним.

Информационная система управления (ИСУ) – это совокупность информации, экономико-математических методов и моделей, технических, программных, других технологических средств и специалистов, а также предназначенная для обработки информации и принятия управленческих решений.

Экономическая информационная система (ЭИС) – это совокупность внутренних и внешних потоков прямой и обратной информационной связи экономического объекта, методов, средств, специалистов, участвующих в процессе обработки информации и выработке управленческих решений.

Автоматизированная информационная система (АИС) представляет собой совокупности информации, экономико-математических методов и моделей, технических, программных, технологических средств и специалистов, предназначенную для обработки информации и принятия управленческих решений.

6. Классификация информационных систем

Рисунок 5 - Классификация информационных систем

 

Рисунок 6 - Типы информационных систем

 

Рисунок 7 – Характеристики процессов информационных систем

 

Автоматизированные информационные системы разнообразны и могут быть классифицированы по ряду признаков. Классификация информационных систем управления зависит от видов процессов управления, уровня управления, сферы функционирования экономического объекта и его организации, степени автоматизации управления и т.д.  Можно привести, например, и такую классификацию, как на рисунке 8.

Рисунок 8 – Классификация автоматизированных информационных систем

 

Так как классификация систем по сфере функционирования объекта управления очевидна, рассмотрим другие признаки.

По видам процессов управления автоматизированные информационные системы подразделяются на:

АИС управления технологическими процессами – это человеко-машинные системы, обеспечивающие управление технологическими устройствами, станками, автоматическими линиями. Предназначены для автоматизации различных технологических процессов (гибкие технологические процессы, энергетика и т.д.).

АИС управления организационно-технологическими процессами представляют собой многоуровневые иерархические системы, сочетающие АИС управления технологическими процессами и АИС управления предприятиями.

Для АИС организационного управления объектом служат производственно-хозяйственные, социально-экономические функциональные процессы, реализуемые на всех уровнях управления экономикой, в частности:

                     налоговые АИС;

                     АИС таможенной службы;

                     статистические АИС;

                     АИС промышленных предприятий и организаций (особое место по значимости и распространенности в них занимают бухгалтерские АИС) и др.

Предназначены для автоматизации функций управленческого персонала. К этому классу АИС относятся информационные системы управления как промышленными фирмами, так и непромышленными экономическими объектами – предприятиями сферы обслуживания. Основными функциями таких систем являются оперативный контроль и регулирование, оперативный учет и анализ, перспективное и оперативное планирование, бухгалтерский учет, управление сбытом и снабжением и решение других экономических и организационных задач.

АИС научных исследований обеспечивают высокое качество и эффективность межотраслевых расчетов и научных опытов. Обеспечивают решение научно-исследовательских задач на базе экономико-математических методов и моделей. Методической базой таких систем служат экономико-математические методы, технической базой – самая разнообразная вычислительная техника и технические средства для проведения экспериментальных работ моделирования. Как организационно-технологические системы, так и системы научных исследований могут включать в свой контур системы автоматизированного проектирования работ (САПР).

Обучающие АИС получают широкое распространение при подготовке специалистов в системе образования, при переподготовке и повышении квалификации работников разных отраслей.

К этой классификации можно добавить:

Интегрированные АИС предназначены для автоматизации всех функций управления фирмой и охватывают весь цикл функционирования экономического объекта: начиная от научно-исследовательских работ, проектирования, изготовления, выпуска и сбыта продукции до анализа эксплуатации изделия.

Корпоративные АИС используются для автоматизации всех функций управления фирмой или корпорацией, имеющей территориальную разобщенность между подразделениями, филиалами, отделениями, офисами и т.д.

 

В соответствии с третьим признаком классификации выделяют отраслевые, территориальные и межотраслевые АИС, которые одновременно являются системами организационного управления, но уже следующего – более высокого уровня иерархии.

Отраслевые АИС функционируют в сферах промышленного и агропромышленного комплексов, в строительстве, на транспорте. Эти системы решают задами информационного обслуживания аппарата управления соответствующих ведомств.

Территориальные АИС предназначены для управления административно-территориальными районами. Предназначены для решения информационных задач управления административно-территориальными объектами, расположенными на конкретной территории. Деятельность территориальных систем направлена на качественное выполнение управленческих функций в регионе, формирование отчетности, выдачу оперативных сведений местным государственным и хозяйственным органам.

Межотраслевые АИС являются специализированными системами функциональных органов управления национальной экономикой (банковских, финансовых, снабженческих, статистических и др.). Имея в своем составе мощные вычислительные комплексы, межотраслевые многоуровневые АИС обеспечивают разработку экономических и хозяйственных прогнозов, государственного бюджета, осуществляют контроль результатов регулирование деятельности всех звеньев хозяйства, а также контроль наличия и распределения ресурсов.

К этой классификации можно добавить:

АИС федерального значения решают задачи информационного обслуживания аппарата административного управления и функционируют во всех регионах страны.

Муниципальные АИС функционируют в органах местного самоуправления для информационного обслуживания специалистов и обеспечения обработки экономических, социальных и хозяйственных прогнозов, местных бюджетов, контроля и регулирования деятельности всех звеньев социально-экономических областей города, административного района и т. д.

5) Как уже было сказано, информацию об окружающем нас реальном мире мы получаем в виде набора символов или сигналов. Но если эти символы или сигналы никому не понятны, то информация бесполезна. Необходим язык общения - знаковый способ представления информации. Основа языка - алфавит - некоторый конечный упорядоченный набор символов или сигналов. Мощность алфавита - полное число его символов (N). За свою историю человек придумал много языков и алфавитов. Примеры языков:  естественные - мимика и жесты, музыка, живопись, речь человека; Формальные - чертежи, схемы, формулы, ноты и т.д. Естественный язык можно формализовать. (Для формализации музыки придумали нотную грамоту, для формализации речи создали национальные алфавиты и т.п.) Примеры алфавитов: латинский (26 символов), русский (33 символа), арабские цифры, азбука Морзе и т.д. В зависимости от задачи, которую вы перед собой ставите, можно использовать разные способы представления информации. Чтобы послушать музыку, не нужно переводить её в нотную запись. А вот научиться её играть легче по нотам, чем подбирать на слух. Формализованные языки используются для кодирования информации. Некоторый набор символов алфавита образует слово, а число этих символов есть его длина. От изменения длины слова, очевидно, будет меняться и информация, заключенная в нем. Как? Чтобы разобраться в изменениях информации, необходима ее оценка (измерение).

Задача измерения информации не так проста, как кажется на первый взгляд. Различные подходы к измерению информации обусловлены различными подходами к её определению и кодированию.

1. Субъективное восприятие сообщения (содержало ли оно новую для вас информацию или нет, насколько эта информация была полезной) делает невозможным его количественную оценку при обыденном подходе к понятию "информация".

2. Подход к информации как мере уменьшения неопределённости знания позволяет применять вероятностный подход к её измерению (будет изучаться в 10 классе).

3. Подход, основанный на подсчёте числа символов в сообщении (количества данных), называетсяалфавитным.

Вообще говоря, количество данных и количество информации - два разных понятия. Данные - это конкретная дискретная форма представления информации, которая используется для её записи в памяти технического устройства или для её передачи по каналу связи. Количество данных для передачи одной и той же информации может быть различным в зависимости от способа кодирования этой информации (от используемого алфавита).

В каком виде поступает информация в компьютер? Может ли машина хранить и обрабатывать информацию в виде символов (букв, цифр, знаков), привычных для человека? Увы, нет! Компьютер обрабатывает информацию только в закодированном виде. Кодирование и его теория своими корнями связаны с древнейшим искусством тайнописи или криптографии . Изобретение телефона и телеграфа в середине XIX века поставило перед учеными и инженерами проблему создания теории связи, как новой теории кодирования, где наибольший интерес стала представлять не проблема связи между людьми, а между людьми и устройствами и только между устройствами. Первой ориентированной на технику системой кодирования стала азбука Морзе. Это попытка двоичного кодирования, но здесь кроме двух символов - точка и тире - есть еще и третий символ - пробел (пауза). С той или иной степенью точности информацию можно разделить на небольшие элементарные части. Например, текст в книге состоит из букв, пробелов и других символов, рисунок из точек, музыка из отдельных звуков. Каждый символ - это элементарная часть информации. Информация будет закодированной, если любая ее элементарная часть представлена в виде числа или набора чисел. Поскольку компьютеры работают на электричестве, естественно было бы для кодирования выбрать разные состояния электрического тока (сильный - слабый, включено - выключено). Исторически принято эти два состояния обозначать через 0 и 1. В каких единицах измерять эту закодированную информацию? Посмотрите на произвольное число (код): 10100111. Как бы Вы измерили количество информации, закодированной в нем? Проще всего посчитать, сколько цифр потребовалось для кодирования данной информации. Таким образом, единицей информации становится одна двоичная цифра: 0 или 1. Эту минимальную единицу измерения Н. Винер назвал бит (английское bit, сокращенное от binary digit - двоичная цифра). Бит - самое короткое слово двоичного алфавита, причем цифры 0 и 1 при этом равноправны. Количество информации в двоичном коде 10100111 равно 8 бит. Но 1 бит - это очень маленькое количество информации. Для удобства введена более крупная единица, принятая Международной системой СИ за основную - байт (byte). Один байт - это информация, которая кодируется восьмиразрядным (8 цифр) двоичным кодом. 1 байт = 8 бит При алфавитном подходе считается, что каждый символ текста имеет определённый информационный вес (b), зависящий от мощности алфавита. 1 бит - это информационный  вес символа двоичного алфавита. С увеличением мощности алфавита увеличивается информационный вес символов этого алфавита. Почему? Тут придется вспомнить комбинаторику. Сколько разных сообщений можно закодировать одной цифрой двоичного алфавита? - Два (0 или 1) Двумя цифрами? - Четыре (00, 01, 10, 11) И т.д. Известна формула: число перестановок (возможных различных кодов) из n цифр равно 2n  Другими словами Информационный вес символа, выраженный в битах (b), и мощность алфавита (N) связаны формулой N=2b Символов на нашей клавиатуре около 200 (русский и латинский алфавит, строчные и прописные буквы, цифры, знаки препинания, спецсимволы). Попробуем подобрать число n, достаточное для кодирования этих символов: 27 = 128 (мало), 28 = 256 (хватит). Поэтому в кодировке ASCII 1 символ текста кодируется одним байтом (8 битами). Байт - это не только единица информации, но и элементарная ячейка памяти компьютера. Память компьютера состоит из последовательности таких ячеек. Каждая ячейка имеет адрес - номер ячейки и содержимое - двоичный код, который хранится в ней. Количество данных, обрабатываемых компьютером, измеряется в байтах, но чаще для этого используются более крупные единицы: 1 Килобайт (Кб) = 210 байт = 1024 байт 1 Мегабайт (Мб) = 210 Кб = 1 048 576 байт 1 Гигабайт (Гб) = 210 Мб = 1 073 741 824 байт.

Может возникнуть вопрос, почему в международной системе СИ приставки Кило, Мега и Гига вдруг получили другое значение. Ответ здесь в больших буквах. Кило и кило - это две большие разницы. 1 килобайт (кб) = 103 байт = 1 000 байт 1 мегабайт (мб) = 106 байт = 1 000 000 байт 1 гигабайт (гб) = 109 байт = 1 000 000 000 байт. В ноябре 2000 г. международной электротехнической комиссией (МЭК) были приняты поправки к международному стандарту. По этому решению приставки, кратные степеням 2 получили своё особое название: 1 кибибайт (Киб)= 210 байт = 1024 байт 1 мебибайт (Миб) = 210 Киб = 1 048 576 байт 1 гибибайт (Гиб)= 210 Миб = 1 073 741 824 байт К сожалению, эти приставки не стали привычными нашему слуху, хотя срок их существования уже достаточно большой.  Постановлением Правительства Российской Федерации от 31 октября 2009 г. № 879 закреплено обозначение двоичных приставок в привычном звучании, но написание их отличается от десятичных.

Скорость передачи данных и пропускную способность каналов связи принято измерять в битах в секунду (бит/с) и кратных этому: 1 килобит (кбит/с) = 103 бит/с 1 мегабит (мбит/с) = 106 бит/с 1 гигабит (гбит/с) = 109 бит/с А при измерении оперативной памяти принято измерение в единицах, кратных не степеням десятки, а степеням двойки.

Из-за этого первоначально и возникла путаница в приставках.