
- •Ивановский государственный энергетический университет
- •Лекция 1
- •1. Физические основы деформационного упрочнения металлов
- •1.1 Параметры состояние поверхностного слоя деталей машин
- •Субструктура
- •Задание 1.1
- •2.2 Образование и размножений дислокаций
- •Задание 2.1
- •3.2. Физические основы разрушения металлов
- •Задание 3.1
- •4.2.2 Водородное охрупчивание
- •4.2.3 Отличия водородного изнашивания от водородного охрупчивания
- •4.2.4 Методы уменьшения и предупреждения водородного изнашивания
- •4.3 Абразивное изнашивание
- •4.4 Окислительное изнашивание
- •4.5 Изнашивание вследствие пластической деформации
- •4.6 Изнашивание вследствие диспергирования
- •4.7 Изнашивание в результате выкрашивания вновь образуемых структур
- •4.8 Коррозия
- •4.9 Кавитационное изнашивание
- •4.9.1 Гидродинамическое изнашивание
- •4.9.2 Вибрационная кавитация
- •4.10 Эрозионное изнашивание
- •4.11 Схватывание и заедание поверхностей при трении
- •4.12 Изнашивание при фреттинг- коррозии
- •4.13 Трещинообразование на поверхности трения
- •4.13.1 Усталостное изнашивание
- •4.13.2 Трещинообразование термического происхождения
- •4.14 Избирательный перенос при трении
- •4.14.1 Использование избирательного переноса в узлах машин
- •Задание 4.1
- •5.2 Классификация методов отделочно-упрочняющей обработки деталей машин
- •5.2.1 Упрочнение с созданием пленки на поверхности
- •5.2.2 Упрочнение с изменением химического состава поверхностного слоя металла
- •6.2. Расчет глубины деформационного упрочнения поверхностного слоя
- •6.2.1 Расчет приближенного значения накопленной деформации поверхностного слоя
- •Задание 6.1
- •Задание 6.2
- •Лекция 7
- •7. Алмазное выглаживание
- •7.1 Силы, возникающие при алмазном выглаживании
- •7.2 Трение и смазка
- •7.3 Инструменты для выглаживания
- •7.4 Вибровыглаживание
- •Задание 7.1
- •8.2 Азотирование
- •8.3 Термодиффузионное хромирование
- •8.4 Силицирование
- •8.5 Оксидирование
- •8.6 Фосфатирование
- •8.7 Сульфидирование
- •8.8 Гальванические покрытия поверхностей деталей машин
- •8.8.1 Электрическое хромирование
- •8.8.2 Железнение
- •8.9 Электромеханический способ упрочнения детали
- •Задание 8.1
- •9.1 Лазерное упрочнение
- •9.1.1 Лазерная наплавка
- •9.1.2 Лазерное оборудование
- •9.2 Электронно-лучевая обработка
- •9.2.1 Электронно-пучковое оборудование
- •9.3 Методы детонационного и плазменного нанесения покрытий
- •9.3.1 Оборудование для детонационного нанесения покрытия
- •9.3.2 Плазменное поверхностное упрочнение деталей
- •9.3.3 Оборудование для плазменного упрочнения деталей
- •Техническая характеристика установки мпу-4:
- •9.3.4 Технологические варианты плазменного упрочнения деталей
- •Задание 9.1
- •10.2 Ионное распыление
- •10.3 Магнетронное распыление
- •10.4 Ионное осаждение покрытий
- •10.5 Ионно-диффузионное насыщение
- •10.6 Ионное легирование (имплантация)
- •Задание 10.1
- •Задание 10.2
- •Лекция 11
- •11. Магнитное упрочнение деталей машин
- •11.1 Методы магнитной обработки
- •11.2 Сущность магнитной обработки
- •Задание 11.1
- •12.1.1 Выбор материалов для трущихся деталей
- •12.1.2 Выбор материалов при конструировании узлов трения
- •12.1.3 Числовые критерии работоспособности материалов в парах трения
- •12.1.4 Правила сочетания материалов
- •12.1.5 Пористость материала
- •12.1.6 Расположение материалов пар трения по твердости
- •12.1.7 Замена в узлах машин трения скольжения трение качения
- •12.1.8 Учет температурных деформаций детали
- •12.1.9 Способы установки узлов, уменьшающие дополнительные нагружения при монтаже и в эксплуатации
- •12.1.10 Защита рабочих поверхностей пар трения от загрязнения
- •12.2 Методы повышения износостойкости деталей и узлов трения машин в эксплуатации
- •12.2.1 Изменение свойств смазочного материала при эксплуатации
- •12.2.2 Отложения на деталях и в смазочной системе
- •12.2.3 Пенообразование
- •12.2.4 Обкатка машин
- •Задание 12.1
- •Ответ 5.1
- •Ответ 7.3
- •Ответ 11.2
- •Ответ 12.1
- •Ответ 12.2
4.9 Кавитационное изнашивание
4.9.1 Гидродинамическое изнашивание
Кавитация дословно означает полость, каверна. Однако под кавитацией понимают явление образования в движущемся по поверхности твердого тела потоке жидкости пустот в виде пузырей, полос и мешков, наполненных парами, воздухом или газами, растворенными в жидкости и выделившимися из нее. Это явление обусловлено следующим. В движущемся с большой скоростью потоке при его сужении и наличии препятствий на его пути давление может упасть до давления, соответствующего давлению парообразования при данной температуре. При этом, в зависимости от сопротивления жидкости растягивающим усилиям, может произойти разрыв, нарушение сплошности потока. Образующаяся пустота заполняется паром и газами, выделившимися из жидкости. Воздух, вовлекаемый в поток, облегчает возникновение кавитации. Образовавшиеся парогазовые пузыри размерами порядка десятых долей миллиметра, перемещаясь вместе с потоком, попадают в зоны высоких давлений. Пар конденсируется, газы растворяются, и в образовавшиеся пустоты с громадным ускорением устремляются частицы жидкости; происходит сопровождаемое ударом восстановление сплошности потока.
Исследования показали, что кавитационныи пузырек может вырасти за 0,002 с до 6 мм в диаметре и полностью разрушиться за 0,001 с. В определенных типах кавитации на площади в 1 см2в течение 1 с могут образоваться и разрушиться более 30 млн. кавитационных пузырьков.
Кавитация наблюдается в трубопроводах, в гидромониторах и в потоках, обтекающих лопатки центробежных и пропеллерных насосов и лопастей гидравлических турбин и гребных винтов. Явление кавитации вызывает вибрации, стуки и сотрясения, что приводит к расшатыванию крепежных связей, обрыву болтов, смятию резьб, фрикционной коррозии стыков, нарушению уплотнений и усталостным поломкам.
Предупредить кавитацию можно, проектируя гидромеханическую систему так, чтобы во всех точках потока давление не опускалось ниже давления парообразования.
Кавитационная стойкость материала определяется его составом и структурой. Повышение содержания углерода в углеродистой стали увеличивает ее стойкость. Однако, начиная с 0,8 % С, она начинает падать. Пластинчатый перлит более стоек, чем зернистый. Введение никеля и хрома в сталь повышает ее стойкость за счет снижения количества феррита, увеличения степени дисперсности и др. Шаровидная форма графита благоприятна. Наиболее стойким является низколегированный чугун (1 % Ni, 0,3 % Mo) с шаровидным графитом. Закалка с нагревом ТВЧ, цементация, поверхностное упрочнение увеличивает стойкость.
4.9.2 Вибрационная кавитация
Возникает при колебании твердого тела относительно жидкости или жидкости относительно твердого тела. Давление в жидкости на границе раздела жидкости и твердого тела может упасть и вызвать образование кавитационных пузырей. Условия кавитации зависят от внешнего давления на систему и насыщенности жидкости воздухом.
Вибрационную кавитацию могут вызвать звуковые колебания, особенно ультразвуковые. Звуковые волны ускоряют окислительно-восстановительные реакции, вызывают внутримолекулярные перегруппировки веществ, усиливают диспергирование, ускоряют процессы мойки и обезжиривания поверхностей и вызывают коагуляцию мелких частиц.
Вибрационная кавитация проявляется в двигателях внутреннего сгорания, особенно на наружных поверхностях гильз в результате их колебаний от ударов поршня. Износ от кавитации наружной стенки гильзы может быть в 3 - 4 раза больше, чем износ внутренней поверхности от действия поршневых колес.