Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы по организации ЭВМ.doc
Скачиваний:
21
Добавлен:
26.09.2019
Размер:
776.7 Кб
Скачать

20. Сети межсоединений. Топология.

Т опология сети межсоединений определяет, как расположены каналы связи и коммутаторы (это, например, может быть кольцо или решетка). Топологии можно изображать в виде графов, в которых дуги соответствуют каналам связи, а узлы — коммутаторам (рис. 8.4). С каждым узлом в сети (или в соответствующем графе) связан определенный ряд каналов связи. Математики называют число каналов степенью узла, инженеры — коэффициентом разветвления. Чем больше степень, тем больше вариантов маршрута и тем выше отказоустойчивость. Если каждый узел содержит к дуг и соединение сделано правильно, то можно построить сеть межсоединений так, чтобы она оставалась полносвязной, даже если к-1 каналовповреждены.

Следующее свойство сети межсоединений — это ее диаметр. Если расстоянием между двумя узлами мы будем считать число дуг, которые нужно пройти, чтобы попасть из одного узла в другой, то диаметром графа будет расстояние между двумя узлами, которые расположены дальше всех друг от друга. Диаметр сети определяет самую большую задержку при передаче пакетов от одного процессора к другому или от процессора к памяти, поскольку каждая пересылка через канал связи занимает определенное количество времени. Чем меньше диаметр, тем выше производительность. Также имеет большое значение среднее расстояние между дву-

мя узлами, поскольку от него зависит среднее время передачи пакета.

Еще одно важное свойство сети межсоединений — это ее пропускная способность, то есть количество данных, которое она способна передавать в секунду.

Очень важная характеристика — бисекционная пропускная способность. Чтобы вычислить это число, нужно мысленно разделить сеть межсоединений на две равные (с точки зрения числа узлов) несвязанные части путем удаления ряда дуг изграфа. Затем нужно вычислить общую пропускную способность дуг, которые мы удалили. Существует множество способов разделения сети межсоединений на две равные части. Бисекционная пропускная способность — минимальная из всех возможных. Предположим, что бисекционная пропускная способность составляет800 бит/с. Тогда если между двумя частями много взаимодействий, то общую пропускную способность в худшем случае можно сократить до 800 бит/с. По мнению многих разработчиков, бисекционная пропускная способность — это самая важ ная характеристика сети межсоединений. Часто основная цель при разработке сети межсоединений — сделать бисекционную пропускную способность максимальной.

На рис. 8.4, б изображена другая нульмерная топология — полное межсоединение (full interconnect). Здесь каждый узел непосредственно связан с каждым имеющимся узлом. В такой разработке пропускная способность между двумя секциями максимальна, диаметр минимален, а отказоустойчивость очень высока (даже при утрате шести каналов связи система все равно будет полностью взаимосвязана). Однако для к узлов требуется к(к-1)/2 каналов, а это совершенно неприемлемо для больших значений к.

На рис. 8.4, в изображена третья нульмерная топология — дерево. Здесь основная проблема состоит в том, что пропускная способность между секциями равна пропускной способности каналов. Обычно у верхушки дерева наблюдается очень большой поток обмена информации, поэтому верхние узлы становятся препятствием для повышения производительности. Можно разрешить эту проблему, увеличив пропускную способность верхних каналов. Например, самые нижние каналы будут иметь пропускную способность Ь, следующий уровень — пропускную способность 2Ь, а каждый канал верхнего уровня — пропускную способность 4b. Такая схема называется толстым деревом (fat tree). Она применялась в коммерческих мультикомпьютерах Thinking Machines' CM-5. Кольцо (рис. 8.4, г) — это одномерная топология, поскольку каждый отправленный пакет может пойти направо или налево. Решетка или сетка (рис. 8.4, д) — это двумерная топология, которая применяется во многих коммерческих системах. Она отличается регулярностью и применима к системам большого размера, а диаметр составляет квадратный корень от числа узлов (то есть при расширении системы диаметр увеличивается незначительно). Двойной тор (рис. 8.4, е) являяется разновидностью решетки. Это решетка, у которой соединены края. Она характеризуется большей отказоустойчивостью и меньшим диаметром, чем обычная решетка, поскольку теперь между двумя противоположными узлами всего два транзитных участка.

Куб (рис. 8.4, ж) — это правильная трехмерная топология. На рисунке изобра жен куб 2x2x2, но в общем случае он может быть kxkxk. На рис. 8.4, з показан четырехмерный куб, полученный из двух трехмерных кубов, которые связаны между собой. Можно сделать пятимерный куб, соединив вместе 4 четырехмерных куба. Чтобы получить 6 измерений, нужно продублировать блок из 4 кубов и соединить соответствующие узлы и т. д.; n-мерный куб называется иперкубом.