Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по информатике.DOC
Скачиваний:
29
Добавлен:
02.05.2014
Размер:
1.68 Mб
Скачать

2. 1. 4. Построение касательных и нормалей к плоским кривым

Для проведения касательной к кривой необходимо задать уравнение кривой в каком либо виде: Y=F(x); или F1(x, y)=0; или X=Fx(t); Y=Fy(t); и координаты точки на кривой (xi, yi).

119

Уравнение касательной к кривой имеет вид:

(x-xi)*dY/dx =(y-yi); или (x-xi)*dFy/dt = (y-yi)*dFx/dt;

где dY/dx = dF(x)/dx = - (F1(x, y)/x)/(F1(x, y)/y);

Уравнение нормали к кривой имеет вид:

(x-xi) = -(y-yi)*dY/dx; или (x-xi)*dFx/dt = -(y-yi)*dFy/dt;

Пусть уравнение кривой имеет вид: X=A*cos(t); Y=B*sin(t); - эллипс. Алгоритм построения касательной к кривой в расчетной области X_Min<=x<=X_Max , Y_Min<=y<=Y_Max следующий.

1) Находим производные dFx/dt=-A*sin(t); dFy/dt=B*cos(t).

2) В области изменения параметра "t" задаем ti и определяем координаты точки Xi, Yi и производные dXi= (dFx/dt)i, dYi= (dFy/dt)i в точке "ti".

3) Находим точки "1" и "2" пересечения касательной с границами расчетной области:

при dXi<>0 полагаем x1=x_Min и находим y1=(x1-xi)*dYi/dXi + yi;

если y1< y_Min, то y1=y_Min и определяем x1= (y1-yi)*dXi/dYi + xi;

если y1> y_Max, то y1=y_Max и определяем x1= (y1-yi)*dXi/dYi + xi;

аналогично, при dXi<>0 полагаем x2=x_Max и находим y2 по приведенной выше схеме с корректировкой значений y2 и x2.

При dXi=0 полагаем x1=xi и y1=y_Max и x2=xi и y2=y_Min.

4) Через точки "1" и "2" проводим прямую.

L

Yi

L

Xi

Несколько проще алгоритм построения касательной постоянной длины "2*L" к плоской кривой. В этом случае:

при dXi<>0 находим alf=arctg(dY/dx)i; иначе alf=900; и определяем:

x1 = xi + L*cos(alf); y1 = yi + L*sin(alf);

x2 = xi - L*cos(alf); y2 = yi - L*sin(alf);

При построении нормали используется уравнение нормали к кривой и приведенные выше алгоритмы.

Практическое задание N 2. 8

В заданной прямоугольной области построить серию касательных, либо нормалей к плоским кривым: эллипсу, параболе, гиперболе и т. п.

120

2. 1. 5. Двумерные преобразования координат

Преобразование координат графических объектов используется с целью модификации, зеркального отображения и перемещения объекта. Основные случаи :

- преобразование системы координат, например, из полярной в декартову,

- изображение типовых или повторяющихся деталей объекта,

- построение проекций трехмерных объектов,

- направленная деформация при синтезе новых форм,

- мультипликация и создание узоров.

Различают двумерные ( 2D ) и трехмерные ( 3D) преобразования. Рассмотрим двумерные аффинные преобразования, когда в получаемом новом изображении объекта сохраняется прямолинейность и параллельность прямых, а также деление отрезков в заданных соотношениях.

Общий вид формул двумерных аффинных преобразований:

x1= a11 x + a12 y + a13 или в x1 a11 a12 a13 x

матричном y1 = a21 a22 a23 * y

y1= a21 x + a22 y + a23 виде: z1 0 0 1 z

Здесь x, y - координаты исходного, а x1, y1 - преобразованного объекта.

Коэффициенты преобразований a I J сохраняют в виде матрицы, расширенной до квадратной, - при для вычисления коэффициентов составного преобразования перемножают соответствующие матрицы коэффициентов типовых преобразований.

Примеры типовых преобразований и соответствующие им матрицы:

( Ф - исходная фигура, Ф1 - преобразованная )

Y

dx Ф1 Параллельный 1 0 dx

dy перенос 0 1 dy

Ф 0 0 1

X

Y

Ф1 Масштабирование Sx 0 0

Sx = x1/x; Sy = y1/y 0 Sy 0

Ф 0 0 1

X

Y

Ф1

Поворот относительно cos a -sin a 0

начала координат sin a cos a 0

Ф 0 0 1

a

X

121

Зеркальное отображение:

Y

Ф1 cos(2*A) sin(2*A) 0

относительно оси Y=Х sin(2*A) - cos(2*a) 0

Ф проходящей под углом “A” 0 0 1

0 X

Ф1 относительно начала -1 0 0

координат 0 -1 0

0 0 1

Y

Y1

a Ф1

Деформация сдвига :1 tg(a) 0

Ф X1 в направлении X - a tg(b) 1 0

в направлении Y - b 0 0 1

b

X

Составные преобразования обычно представляют в виде комбинаций типовых преобразований. Например, поворот относительно произвольной точки ( Xc, Yc) можно представить как комбинацию трех преобразований:

- параллельный перенос, переводящий центр поворота в начало координат,

- поворот относительно начала координат,

- параллельный перенос, противоположный первоначальному.

Перемножение матриц выполняется следующим образом:

a11 a12 a13 b11 b12 b13 c11 c12 c13

a21 a22 a23 * b21 b22 b23 = c21 c22 c23

a31 a32 a33 b31 b32 b33 c31 c32 c33

где cI J = aI 1* b1 J + aI 2* b2 J + aI 3* bJ 3 , i= 1, 2, 3; j= 1, 2, 3.

то есть элемент матрицы “C”, расположенный в I-строке и J-столбце, равен сумме произведений элементов I -ой строки матрицы “A“ на соответствующие элементы J-го столбца матрицы B.

В приведенной ниже программе плоская фигура задается в виде линий, последовательно соединяющих координаты массива точек (xa, ya) на чертеже ( x, y - в системе координат экрана ). Эти координаты подвергаются аффинным преобразованиям, коэффициенты преобразования хранятся в двумерном массиве r. Начальному положению фигуры соответствует единичная матрица R (единицы на главной диагонали, остальные члены - нули). При очередном преобразовании коэффициенты матрицы R пересчитываются путем умножения на нее матрицы этого преобразования (А), получаемая матрица (В) снова записывается в R. Новые координаты x, y высчитываются в процедуре NEW_XY, которая вызывается непосредственно при выводе фигуры на экран процедурой PICTURE.

122

uses Graph, Crt; {------- Аффинные преобразования плоских фигур -------- }

var Gd,Gm,n,i,j,k,l,m,xc,yc,xc1,yc1: integer; {-- описание --}

{ глобальных переменных}

xa, ya: array[1..50] of real; { исходные координаты фигуры }

x, y : array[1..50] of integer; { новые координаты фигуры }

a, b, r: array[1..3, 1..3] of real; { массивы коэффициентов матриц 3*3 }

PROCEDURE I_R; {-------- присвоение матрице R значения единичной ---------}

begin

for i:=1 to 3 do begin { 1 0 0 }

for j:=1 to 3 do r[i, j]:=0; { 0 1 0 }

r[i, i]:=1; end; { 0 0 1 }

end;

PROCEDURE MULT; {---------- умножение матриц А и R: R = B = A*R ------------}