Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Patfiz_ekzamen_voprosy (1).doc
Скачиваний:
95
Добавлен:
25.09.2019
Размер:
2.67 Mб
Скачать

47. Стабильность липидного слоя мембран и явление электрического пробоя.

Липидный слой клеточной и внутриклеточных мембран выполняет две основные функции - барьерную и матричную (структурную). Повреждение барьера приводит к нарушению регуляции внутриклеточных процессов и тяжелым расстройствам клеточных функций. С другой стороны, липидный слой мембран формирует в клетке особую жидкую фазу. На поверхности раздела водной и липидной фаз, а также внутри липидной фазы "плавают" многочисленные ферменты, многие субстраты биохимических реакций, белковые клеточные рецепторы, гликолипиды и гликолипопротеиды, образующие гликокаликс. Во многих клетках до 80% белков встроены в мембраны или связаны с их поверхностью. Липидный бислой выполняет, таким образом, роль структурной основы или матрицы для всех этих белковых, липопротеидных, гликопротеидных и гликолипидных компонентов мембран. От свойств липидной фазы мембран, таких, как вязкость, поверхностный заряд, полярность, зависит работа мембранных ферментов и рецепторов. Наличие гликокаликса характерно для наружных клеточных мембран. Он выполняет ряд функций, в частности, от него зависят свойства клеточной поверхности, способность клеток к фагоцитозу и адгезии с другими клетками. Гликокаликс эритроцитов препятствует их агглютинации. Повреждение гликокаликса приводит к тяжелым последствиям, помимо прочего еще и потому, что это приводит к изменению иммунных свойств клеточной поверхности.

ЯВЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ПРОБОЯ МЕМБРАН

В норме между внутренней и наружной сторонами мембраной существует небольшая разность потенциалов, а через мембрану проходит электрический ток. Его величина зависит от:

1) разности потенциалов на наружной и внутренней сторонах мембраны или напряжения на мембране V;

2) омического сопротивления мембраны этому току R.

I = V/R

Величина тока через мембрану прямо пропорциональна разности потенциалов на мембране и обратно пропорциональна сопротивлению мембраны току.

Если разность потенциалов на мембране превысит критическое значение, то произойдет резкое возрастание тока. Критическая разность потенциалов, выше которой происходит резкое возрастание тока, называется потенциалом пробоя. Если разность потенциалов превышает критическое значение, то ток через мембрану будет самопроизвольно нарастать во времени до полного разрушения мембраны. Это явление называется электрическим пробоем мембраны.

48. Стаз. Нарушения реологических свойств крови, приводящие к развитию стаза, механизм развития, последствия.

Стаз - это остановка тока крови в сосудах МКР органа или ткани.

Виды стаза и причины их развития

Все разновидности стаза подразделяют на первичные и вторичные. Первичный (истинный капиллярный) стаз обусловлен первичной агрегацией эритроцитов. Вторичный стаз подразделяется на ишемический и венозный (застойный). Ишемический стаз является исходом тяжелой ишемии, при которой снижается приток артериальной крови в ткань, снижается артериовенозная разница давлений, резко замедляется скорость кровотока по микрососудам, отмечается агрегация форменных элементов крови и остановка крови в сосудах. Венозный стаз является исходом венозной гиперемии, при которой снижается отток венозной крови, снижается артериовенозная разница давлений, отмечается застой крови в микрососудах, повышается вязкость крови, отмечается агрегация форменных элементов крови, и это обеспечивает остановку тока крови.

Нарушения реологических свойств крови, вызывающие стаз в микрососудах

Реологические свойства крови как неоднородной жидкости имеют особо важное значение при ее течении по микрососудам, просвет которых сопоставим с величиной ее форменных элементов. При движении в просвете капилляров и прилегающих к ним мельчайших артерий и вен эритроциты и лейкоциты меняют свою форму - изгибаются, вытягиваются в длину и т. д. Нормальное течение крови по микрососудам возможно только при условиях, если: а) форменные элементы могут легко деформироваться; б) они не склеиваются между собой и не образуют агрегаты, которые могли бы затруднять кровоток и даже полностью закупоривать просвет микрососудов; концентрация форменных элементов крови не является избыточной. Все эти свойства важны прежде всего для эритроцитов, так как число их в крови человека примерно в тысячу раз превышает количество лейкоцитов.

Нарушения реологических свойств крови в микрососудах связаны главным образом с изменениями свойств эритроцитов крови. Способность эритроцитов к агрегации, т.е. к слипанию и образованию «монетных столбиков», которые затем склеиваются между собой, является их нормальным свойством. Однако агрегация может значительно усиливаться под влиянием разных факторов, изменяющих как поверхностные свойства эритроцитов, так и среду, окружающую их. При усилении агрегации кровь превращается из взвеси эритроцитов с высокой текучестью в сетчатую суспензию, полностью лишенную этой способности. Агрегация эритроцитов нарушает нормальную структуру кровотока в микрососудах и является наиболее важным фактором, изменяющим нормальные реологические свойства крови.

Нарушение деформируемости эритроцитов. Эритроциты изменяют свою форму при течении крови не только по капиллярам, но и в более широких сосудах - артериях и венах, где они бывают обычно вытянутыми в длину. Способность деформироваться (деформируемость) у эритроцитов связана главным образом со свойствами их наружной мембраны, а также с высокой текучестью их содержимого. Деформируемость эритроцитов чрезвычайно изменчива при естественных условиях.

Мембраны эритроцитов становятся более жесткими под влиянием различных патогенных факторов, например при дефиците АТФ, гиперосмолярности и т.д. В результате реологические свойства крови изменяются таким образом, что ее течение по микрососудам затрудняется. Это имеет место при заболеваниях сердца, несахарном диабете, раке, стрессах и др., при которых текучесть крови в микрососудах оказывается значительно пониженной.

Нарушение структуры потока крови в микрососудах. В просвете сосудов поток крови характеризуется сложной структурой, связанной: а) с неравномерным распределением неагрегированных эритроцитов в потоке крови по поперечнику сосуда; б) со своеобразной ориентацией эритроцитов в потоке, которая может меняться от продольной до поперечной; в) с траекторией движения эритроцитов внутри сосудистого просвета. Все это может оказывать значительное влияние на текучесть крови в сосудах.

Изменение концентрации эритроцитов в циркулирующей крови. Содержание эритроцитов в крови считается важным фактором, влияющим на ее реологические свойства, так как при вискозиметрии обнаруживается прямая зависимость между концентрацией эритроцитов в крови и ее относительной вязкостью. Объемная концентрация эритроцитов в крови (гематокрит) может меняться в значительной степени как во всей кровеносной системе, так и местно. В микроциркуляторном русле тех или иных органов и их отдельных частей содержание эритроцитов зависит от интенсивности кровотока. Несомненно, что при значительном увеличении концентрации эритроцитов в кровеносной системе реологические свойства крови заметно меняются, вязкость крови возрастает и усиливается агрегация эритроцитов, что повышает вероятность стаза.

Последствия стаза крови в микрососудах

При быстром устранении причины стаза ток крови в микрососудах восстанавливается и каких-либо существенных изменений в тканях не развивается. Длительный стойкий стаз может оказаться необратимым. Это приводит к дистрофическим изменениям в тканях, вызывает некроз окружающих тканей (инфаркт). Патогенное значение стаза крови в капиллярах в значительной степени зависит от того, в каком органе он возник. Так, особенно опасен стаз крови в микрососудах головного мозга, сердца и почек.