Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_vtorykh_voprosov.doc
Скачиваний:
5
Добавлен:
25.09.2019
Размер:
225.28 Кб
Скачать

6. Приборостроение

Приборостроение — отрасль науки и техники, являющаяся отраслью машиностроения, разрабатывающая и производящая средства измерения, обработки и представления информации, автоматические и автоматизированные системы управления.

- Средства измерительной техники.

- Приборы для измерения теплоэнергетических величин.

- Приборы для измерения механических величин (вес, сила, вибрация, твёрдость, деформация, прочность).

- Средства испытательной техники. Приборы и машины испытания материалов и конструкций на прочность для металлургии, машиностроения, индустрии строительных материалов, резинотехнической, лёгкой и других отраслей промышленности

- Аналитическое приборостроение, создающее устройства для определения состава и концентрации веществ в различных средах, материалах и продуктах. К ним относятся электрохимические, ультразвуковые, оптические, ядерные и иные анализаторы, сложные многопараметровые аналитические системы.

- Рентгеновские квантометры, полярографы, масс-спектрометры, хроматографы, точно фиксирующие элементарную картину многих минеральных и органических соединений.

- Вычислительная техника.

- Средства передачи информационных сигналов и управляющих импульсов на большие расстояния.

- Специальные приборы для геофизики, гидрометеорологии, медицины, сельского хозяйства, транспорта, лабораторное оборудование, специализированные комплектные лаборатории, часы и ювелирные изделия.

 - Развитие микроэлектроники, оптоэлектроники, нелинейной оптики, микромеханики обогащает приборостроение, способствует созданию компактных надёжных экономичных измерительных, аналитических, разведочных и др. приборов, средств управляющей ВТ, телемеханики и автоматики.

- Производство механических и электрических измерительных приборов с деталями высокого класса точности.

- Развитие автоматизированных систем управления в народном хозяйстве страны на основе современных технических средств.

10. Классы точности измерительных приборов

Класс точности — основная метрологическая характеристика прибора, определяющая допустимые значения основных и дополнительных погрешностей, влияющих на точность измерения.

Абсолютными погрешностями являются погрешности, выраженные в единицах измеряемой величины; относительными - выраженные либо в процентах от нее, либо в процентах от верхнего предела измерений (диапазона); приведенные - в процентах от длины шкалы.

Относительная погрешность результата, полученного с помощью указанного вольтметра, зависит от значения измеряемого напряжения, становясь недопустимо высокой для малых напряжений.

Обычно цена наименьшего деления шкалы стрелочного прибора согласована с погрешностью самого прибора. Если класс точности используемого прибора неизвестен, за погрешность s прибора всегда принимают половину цены его наименьшего деления.

Измерительная технология или технология измерений - совокупность методов, подходов к организации измерений и интерпретации результатов, конкретных методик, а также измерительных средств (приборов и средств контроля), необходимая для качественного обслуживания соответствующего направления развития технологии средств связи.

16. Спектры. Спектроскопия

Излучение и поглощение электромагнитных волн атомами вещества подчиняется квантовым законам. В частности, оптическое излучение возникает при квантовых переходах между уровнями энергии атомов, молекул, а также твердых и жидких тел. При этом излучение характеризуется определенным спектром - набором частот электромагнитных волн. Спектры испускания соответствуют квантовым переходам с верхних уровней энергии на нижние, спектры поглощения - с нижних на верхние.

Оптические спектры - эго спектры электромагнитного излучения в инфракрасном, видимом и ультрафиолетовом диапазона шкалы электромагнитных волн. Оптические спектры разделяют на спектра испускания (излучения), спектры поглощения, рассеяния и отражения.

Оптические спектры испускания получаются от источников света разложением их излучения по длинам волн спектральными приборами. Спектры поглощения (абсорбции), рассеяния и отражения обычно получают при прохождении света через вещество с последующим его разложением по длинам волн. Оптический спектр характеризуется долей энергии света каждой из длин волн.

Оптические спектры разделяют на линейчатые, состоящие из отдельных спектральных линий, полосатые, состоящие из отдельных полое, охватывающих каждая определенный интервал длин волн, и сплошные, охватывающие широкий диапазон длин волн.

Энергия излучения сплошных спектров (энергия излучения в единице объема) определяется законом Планка.

Спектроскопия — разделы физики и аналитической химии, посвящённые изучению спектров взаимодействия излучения с веществом. В физике спектроскопические методы используются для изучения всевозможных свойств этих взаимодействий. В аналитической химии — для обнаружения и определения веществ при помощи измерения их характеристических спектров, то есть методами спектрометрии. К существенным преимуществам спектроскопии можно отнести возможность диагностики в «среде обитания» объекта, бесконтактно, дистанционно, без какой-либо специальной подготовки объекта. Поэтому она получила широкое развитие, например, в астрономии.

19. Электрические цепи. Постоянный ток. Закон Ома. Кирхгофа.

Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.

Закон Ома гласит, что сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка. I = U/R

где   есть напряжение или падение напряжения, или, что то же, разность потенциалов между началом и концом участка проводника;  — сила тока в цепи,  — сопротивление всех внешних элементов цепи.

Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю.

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда.

Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю.

При обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

20. Переменный ток. Закон Ома.

Переменный ток - это ток, сила и направление которого изменяются во времени. Переменный ток получают, используя явление электромагнитной индукции, при котором в проводнике, пересекающем магнитное поле, возникает электродвижущая сила. Э.д.с, переменного тока.

Различают мгновенное и действующее значения напряжения и тока.

Любой проводник электрической цепи обладает тремя видами сопротивления: активным, реактивным индуктивным и реактивным емкостным.

В активном сопротивлении ток и напряжение совпадают по фазе, в индуктивном ток отстает по фазе на 90о, в емкостном - опережает по фазе на 90о.

При равенстве Д= 1/С в цепи наступает резонанс.

Простейшими электрическими цепями, в которых может возникать резонанс, являются последовательное и параллельное соединения резистора, индуктивности и емкости, эти цепи называются последовательным и параллельным резонансным контуром.

По отношению к внешним цепям колебательный контур может быть последовательным, если он включен последовательно с источником переменного напряжения, или параллельным, если включен параллельно.

Закон Ома гласит, что сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка. I = U/R

где   есть напряжение или падение напряжения, или, что то же, разность потенциалов между началом и концом участка проводника;  — сила тока в цепи,  — сопротивление всех внешних элементов цепи.

В связи с удобством преобразования из высокого напряжения, необходимого для передачи электроэнергии на большие расстояния, а низкое, необходимое для непосредственного использования в быту и в технике, переменный ток нашел широкое применение в промышленности и в быту. В промышленности переменный ток используется для литания электромоторов, в основном. асинхронного типа, в быту - для питания электронагревательных приборов, освещения, холодильников, бытовых электромоторов и т. п.

21 Техническое применение тока

Переменный ток - это ток, сила и направление которого изменяются во времени. Переменный ток получают, используя явление электромагнитной индукции, при котором в проводнике, пересекающем магнитное поле, возникает электродвижущая сила.

В связи с удобством преобразования из высокого напряжения, необходимого для передачи электроэнергии на большие расстояния, а низкое, необходимое для непосредственного использования в быту и в технике, переменный ток нашел широкое применение в промышленности и в быту. В промышленности переменный ток используется для литания электромоторов, в основном асинхронного типа, в быту - для питания электронагревательных приборов, освещения, холодильников, бытовых электромоторов и т. п. Используется  для передачи и распределения электрической энергии преимущественно благодаря простоте трансформации его напряжения почти без потерь мощности.  Двигатели, основанные на переменном токе, меньше по габаритам, проще по устройству, надёжнее и дешевле. Переменный ток может быть выпрямлен, например полупроводниковыми выпрямителями, а затем с помощью полупроводниковых инверторов преобразован вновь в переменный ток другой, регулируемой частоты; это создаёт возможность использовать простые и дешёвые безколлекторные двигатели.  Переменный ток широко применяется в устройствах связи (радио, телевидение, проволочная телефония на дальние расстояния и т. п.).

23. Закон Лоренца. Электрогенераотры.

На электрический заряд, движущийся в магнитном поле, действует сила Лоренца, равная

где q - величина заряда, Кл; u скорость заряда, м/с; В

— магнитная индукция поля, Г. Эта сила направлена перпендикулярно векторам u и В.

Если проводящий контур движется а стационарном магнитном поле, то в нем наводится э.д.с. индукции, поскольку на каждый свободный заряд — носитель тока в проводнике, перемещающийся вместе с проводником в магнитном поле, действует сила Лоренца, поэтому на отрезке длиной l, движущемся в поле с магнитной индукцией В со скоростью u возникает э.л.с., равная E=-B l u, B

На этом основаны электромеханические электрогенераторы, в которых на статоре размещена обмотка, через которую пропускается постоянный ток, в результате чего в зазоре между статором и ротором (якорем) создается сильное магнитное

поле. На поверхности ротора уложена вторая обмотка, в которой при вращении ротора и пересечении в результате этого силовых линий магнитной индукции создается электродвижущая сила.

Сила Лоренца используется в кольцевых ускорителях заряженных частиц для многократного прогона их (в процессе разгона) по одному и тому же пути.

24. Электромагнитное излучение. Шкала волн

Электромагнитное излучение (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).

Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

Электромагнитное излучение подразделяется на радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и жесткое (гамма-излучение).

Инфракрасное излучение имеет своим источником нагретые предметы и генерируются колебаниями молекул тел. Оптическое излучение происходит в результате перехода электронов атомов с одних орбит возбужденных) на другие (стационарные). Рентгеновские лучи имеют в своей основе возбуждение электронных оболочек атомов внешними воздействиями, например, бомбардировкой электронными лучками. Гамма-излучение имеет источником возбужденные ядра атомов, возбуждение может быть природным, а может явиться результатом наведенной радиоактивности. Шкала электромагнитных волн:

От 1011-103 мкм – электромагнитные волны

103-0,74 мкм – инфракрасное излучение (ИКИ)

0,74--0,4 мкм – видимый свет

0,4мкм- 0,004 мкм – видимый свет

0,01-5 ×10 -6 мкм – ультрафиолетовое излучение (УФИ)

5×105-10-6 мкм и далее – рентгеновские лучи

УКВ — распространяются только в зоне прямой видимости, используются для радиосвязи и в телевидении;

ИКИ — применяются для всякого рода тепловых приборов;

видимый свет — используется во всех оптических приборах;

УФИ — применяется в медицине;

Рентгеновское излучение используется в медицине и в приборах контроля качества изделий; гамма-лучи — колебания поверхности нуклонов, входящих в состав ядра, используются в парамагнитном резонансе для определения состава и структуры вещества.

33. Радиоактивность. Утилизация.

У каждого химического элемента из таблицы Менделеева есть порядковый номер, который указывает заряд ядра, число протонов или электронов. Число атомной массы показывает суммарное число частиц.

Сущность радиоактивности: есть некоторые химические элементы и их изотопы, которые самопроизвольно могут излучать частицы или волны.

Виды радиоактивных лучей:

1. альфа лучи (поток ядер Не)

Это положит. заряженный состоящий из двух протонов и двух нейтронов, обладают большой ионизирующей способностью, но маленькой проникающей.

2. бета лучи (потом электронов(-) и позитронов(+))

3. гама лучи (электромагнтиное коротковолновое жесткое излучение)

большая проникающая способность, но мал. ионизирующая.

Закон радиоактивного распада.

Nt = N0 * e - t

Число радиоактивных ядер экспоненциально убывает со временем.

T ½ - период полураспада (ПП).

ПП – это время, через прошествие которого число радиоактивных ядер остаётся половина от начального количества (50%).

Смысл постоянного радиоактивного распада – вероятность распада одного ядра.

Изотопы – это такие элементы, у которых одинаковое количество протонов, но разное число нейтронов.

Одним из самых надежных способов утилизации РАО является сплавление их со стеклом. Процесс ведется в стекловарных печах. Ввиду высокой активности отходов, доступ обслуживающего персонала к оборудованию, находящемуся за биозащитой невозможен. Некоторые виды РАО, среди которых есть чрезвычайно активные, поступают в твердом виде и количество таких РАО постоянно растет. Переработка переводит их в порошки, пригодные для спекания в керамику, которую затем убирают в хранилище. Предлагается утилизация радиоактивных отходов (РО) в специальных СВЧ печах путем непрерывного процесса стеклования в толстом слое гарнисажа, что позволяет значительно снизить температурную нагрузку на стенки печи и вследствие этого нет необходимости в футеровки и водяном охлаждении. Можно также использовать технологию заплавления РАО в стекло при температурах 1000-1300 С. При этом, проведение технологического процесса будет намного проще и безопаснее, чем в холодном тигле.

35. Биотехнологии. Таблетки.

Биотехнология – это интегрированное использование биохимии, микробиологии, молекулярной биологии и прикладных наук в технологических процессах с применением микроорганизмов, культур клеток и тканей. Б – одно из важнейших направлений научно-технического прогресса, быстро развивающаяся отрасль науки и производства, основанная на промышленном применении естественных и целенаправленно созданных живых систем.

Б чаще всего применяется в медицине, пищевой промышленности, также для решения проблем в области энергетики, охране окружающей среды, и в научных исследованиях. Развитие биотехнологии необходимо для получения экономических и экологических выгод.

Промышленная биотехнология – Б пищевых продуктов, препаратов для сельского хозяйства, препаратов и продуктов для промышленного и бытового использования, лекарственных препаратов, средств диагностики и реактивов. Б также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.

Пищевая Б изучает биотехнологический потенциал сырья животного происхождения и пищевых добавок, в качестве которых используются новые ферментные препараты, продукты микробиального синтеза, новые виды биологически активных веществ и многокомпонентные добавки. Пищевая биотехнология разрабатывает новые, более рентабельные и перспективные конкретные технологические решения, что позволяет создать высококачественную продукцию перерабатывающей промышленности.

В производственном отношении основой биотехнологии в процессе её формирования стала микробиологическая промышленность. В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, полупродукты для дальнейшего синтеза разнообразных веществ, феромоны, органические кислоты, кормовые белки и др.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]