Стабильность ядра

Стабильное или нерадиоактивное ядро — это ядро, атом которого не распадается. Теоретически такие атомы необходимо наблюдать бесконечно долго для того, чтобы убедиться, что они стабильны, иными словами, ядра, которые в действительности радиоактивны, но имеют очень большой период полураспада, могут быть ошибочно приняты за стабильные из-за недостаточной точности измерений. Как пример можно привести ядро лантана-138, ранее считавшееся стабильным и оказавшееся радиоактивным с периодом полураспада 1011 лет, что в тридцать раз больше возраста Вселенной. "Дедушкой" подобных ядер является 128Te, измеренный период полураспада которого равен 1,5·1024 лет.

Можно построить график ядер, которые действительно стабильны, если вычислить для каждого из них число нейтронов N и указать атомный номер Z каждого ядра. График зависимости N от Z в стабильных ядрах, приведен на рис. 1.2.

Рис. 1.2. Соотношение числа нейтронов N и протонов Z в стабильных ядрах

Оказывается, что отношение числа нейтронов к числу протонов N/Z в ядре определяет природу ядра и позволяет систематизировать почти все, что известно о ядре к настоящему времени. Для стабильных элементов, за исключением водорода, ядро которого состоит только из протона, нейтронов в ядре не бывает меньше протонов, обычно же их несколько больше. На рис. 1.2 пунктирная линия, наклон которой 45°, представляет собой ядра с N = Z, т.е. с одинаковым количеством нейтронов и протонов в ядре. Для легких ядер (элемент ниже железа в периодической таблице) количества нейтронов и протонов в ядре часто равны. С ростом атомного номера для стабильных ядер это отношение растет и будет располагаться выше линии N = Z на графике. Для наиболее тяжелого последнего полностью стабильного изотопа - висмута (А = 209, Z = 83, N= 126) отношение N/Z почти точно равно 1,5. Это объясняется наличием сил притяжения между нуклонами в ядре, получившими название ядерных сил. Эти силы действуют между протонами и протонами, протонами и нейтронами, нейтронами и нейтронами в ядре при их столкновениях. Ядерные силы, удерживающие нуклоны в ядрах атома, превосходят кулоновские силы отталкивания между протонами. Ядерные силы короткодействующие, они действуют на расстояниях, сравнимых с двумя протонными диаметрами, а затем резко убывают до нуля с увеличением расстояния. Если обозначить расстояние между нуклонами в ядре буквой А, то на расстояниях А<0,5·10-3 см эти силы являются силами отталкивания. при 0,5·10-13см<А<10-12см— силами притяжения, а на расстоянии А > 10-12 см — быстро исчезают. Ядерные силы ответственны за энергию связи, которая удерживает ядро от распада.

В большинстве случаев радиоактивный распад происходит таким образом, что дочерние ядра становятся более стабильными, чем исходные. Распад более предпочтителен, если дочернее ядро перемещается к линии стабильности N = Z. Продукты деления очень тяжелых ядер, например 235U, будут иметь большой излишек нейтронов, в результате чего они являются бета-излучателями, согласно реакции:

np + e¯ + , (1.10)

где e¯ — электрон, — антинейтрино.

Ниже будет показано, что бета-распад эквивалентен замене нейтрона на протон и сопровождается изменением отношения Ν/Ρ в сторону стабильности.

С другой стороны, при облучении положительными ионами мишеней и деталей ускорителя, часто получают дочерние радиоактивные ядра, испускающие нейтроны. В результате в этих ядрах наблюдается дефицит нейтронов и поэтому возрастает вероятность распада, при котором отношение Ν/Ρ растет, т.е. будет происходить позитронный распад, в результате которого протон преобразуется в нейтрон и позитрон по схеме:

np + e+ + , (1.11)

где е+ — позитрон, — нейтрино, т.е. если в ядре много нейтронов или много протонов, то положение дела поправляется излучением электрона или позитрона.

Соседние файлы в папке Носовский А.В. Вопросы дозиметрии и радиационная безопасность на атомных электрических станциях