Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все вместе кроме 16 и 20.doc
Скачиваний:
18
Добавлен:
22.09.2019
Размер:
7.53 Mб
Скачать
  1. Нормальное распределение.

Нормальное распределение, также называемое гауссовым распределением или распределением Гаусса — распределение вероятностей, которое задается функцией плотности распределения:

где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ² — дисперсия.

Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в статистической физике. Физическая величина, подверженная влиянию значительного числа независимых факторов, способных вносить с равной погрешностью положительные и отрицательные отклонения, вне зависимости от природы этих случайных факторов, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из названий этого распределения вероятностей).

Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

Центральная предельная теорема

Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:

  • отклонение при стрельбе

  • некоторые погрешности измерений (однако, многие погрешности приборов в технике имеют сильно не нормальные распределения)

  • рост живых организмов

Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный).

Центральная предельная теорема показывает, что в случае, когда результат измерения (наблюдения) складывается под действием многих независимых причин, причем каждая из них вносит лишь малый вклад, а совокупный итог определяется аддитивно, т.е. путем сложения, то распределение результата измерения (наблюдения) близко к нормальному.

Нормальное распределение(не википед)

Для вычисления математического ожидания нормально распределенной случайной величины воспользуемся тем, что интеграл Пуассона .

( первое слагаемое равно 0, так как подынтегральная функция нечетна, а пределы интегрирования симметричны относительно нуля).

.

Следовательно, параметры нормального распределения (а и σ) равны соответствен-но математическому ожиданию и среднему квадратическому отклонению исследуемой случайной величины.

18. Вероятность попадания св в заданный интервал .Вероятность заданного отклонения нормальной св.Правило 3 сигм.

Известно, что если случайная величина X задана плотностью распределения  , то вероятность того, что X примет значение, принадлежащее интервалу (a,b), такова:

.

Пусть случайная величина X распределена по нормальному закону. Тогда

  .

Преобразуем эту формулу так, чтобы можно было пользоваться готовыми таблицами. Введем новую переменную  . Отсюда  .

Найдем новые пределы интегрирования. Если  , то   , если  , то  . Тогда

.

Выражение  , входящее в эту формулу, является функцией верхнего предела X, которая называется функцией Лапласа или интегралом вероятностей и обозначается Ф(x). В результате получаем:

Ф — Ф ,

где Ф(x) =  .

Эту формулу называют формулой Лапласа.

Если случайная величина X является признаком генеральной совокупности, то формула Лапласа дает долю элементов генеральной совокупности, у которых значение признака X находится в границах от   до  .

Интеграл, через который выражается функция Лапласа, нельзя выразить через элементарные функции. Его можно представить в виде степенного ряда, если разложить в ряд подынтегральную функцию  и почленно проинтегрировать ряд. Тогда

Ф(x) =  .

C помощью этого ряда можно вычислить значение Ф(x) для любого x с любой точностью. Составлены специальные таблицы значений функции Лапласа.