Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиология дыхания.docx
Скачиваний:
106
Добавлен:
21.09.2019
Размер:
135.4 Кб
Скачать
  1. Газообмен в тканях. Парциальное напряжение кислорода и углекислого газа в тканевой жидкости и клетках. Коэффициент утилизации кислорода.

Кислород к тканям вначале идет за счет конвекции, т. е. в виде потока крови, а на уровне капилляров — за счет процесса диффузии. Принято считать, что кислород покидает кровь только в капиллярах. Однако в 70-е годы появились факты, свидетельствующие о том, что кислород может входить в ткани через мелкие артерии и артериолы. Основной механизм доставки кислорода к клеткам — диффузия. Скорость ее, как и в альвеолярно-капиллярных взаимоотношениях, прямопропорциональна площади обменной диффузии, обратно пропор-циональна диффузионному расстоянию и прямопропорциональна градиенту напряжения. В миокарде, к примеру, на каждое мышечное волокно приходится 1 капилляр, а среднее расстояние между капиллярами составляет 25 мкм. Расстояние между капиллярами в коре головного мозга — 40 мкм, в скелетных мышцах — 80 мкм. Следовательно, в сердечной мышце создаются более благоприятные условия для экстракции кислорода, для более эф­фективного использования кровотока.

Для объяснения процессов диффузии кислорода в тканях было предложено множество моделей. До сих пор наиболее удачной считается модель, предложенная классиком физио­логии А. Крогом в 1918 г. — модель тканевого цилиндра. Согласно модели Крога участок ткани, снабжаемый одним капилляром, рассматривается как цилиндр, осью которого слу­жит капилляр. По Крогу, напряжение кислорода в участках ткани зависит от удаленности участка от капилляра — чем дальше удален участок, тем меньше в нем парциальное давле­ние кислорода. Есть участки, которые далеко расположены от капилляров («смертельный угол»), поэтому в них интенсивность обмена крайне низка. Недавно с помощью поляриме­трической методики (микроэлектроды, приспособленные для замера р0;) удалось показать, что содержание кислорода в тканях мозга — величина весьма варьирующая — от 5—10 мм рт. ст. до 90 мм рт. ст., и есть области, лежащие рядом с капилляром, где парциальное напряжение кислорода высокое, а есть области, удаленные от капилляра — с крайне низ­ким содержанием кислорода. Таким образом, стало ясно, что внутритканевая диффузия кислорода весьма ограничена.

Наименьшее напряжение кислорода наблюдается в местах его потребления — митохондриях клеток, в которых кислород используется для процессов биологического окисления. Молекулы кислорода, освобождающиеся по ходу кровеносных капилляров в результате диссоциации оксигемоглобина, диффундируют в направлении более низких величин напряжения кислорода. Напряжение кислорода в тканях зависит от многих факторов: скорости тока крови, геометрии капилляров и расстояния между ними, рас­положения клеток по отношению к капиллярам, интенсивности окислительных процессов и т. д. В тканевой жидкости около капилляров напряжение кислорода значительно ниже (20—40 мм рт. ст.), чем в крови. Особенно низко оно в участках тканей, равноудален­ных от соседних капилляров. При большой интенсивности окислительных процессов на­пряжение кислорода в клетках может приближаться к нулю. Увеличение скорости кровотока резко повышает напряжение кислорода в тканях. Например, увеличение скорости тока крови вдвое может повысить напряжение кислорода в нервной клетке на 10 мм рт. ст. В мышцах увеличению снабжения кислородом способствует раскрытие так называемых резервных капилляров.

Наибольшее напряжение двуокиси углерода (до 60 мм рт. ст.) отмечается в клетках в результате образования этого газа в митохондриях. В тканевой жидкости напряжение двуокиси углерода изменчиво (в среднем 46 мм рт. ст.), а в артериальной крови состав­ляет 40 мм рт. ст. Двуокись углерода диффундирует по градиенту напряжений в крове­носные капилляры и транспортируется кровью к легким.