Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
46-54.doc
Скачиваний:
9
Добавлен:
20.09.2019
Размер:
640 Кб
Скачать

53. Специализированные пути метаболизма цикл. А,к- фенилаланина и тирозина.. Заболевания, связанные с нарушением обмена фенилаланина и тирозина.

Фенилаланин относится к незаменимым аминокислотам, поскольку ткани животных не обладают способностью синтезировать его бензольное кольцо. В то же время тирозин полностью заменим при достаточном поступлении фенилаланина с пищей. Объясняется это тем, что основной путь превращенияфенилаланина начинается с его окисления (точнее, гидрокси-лирования) в тирозин (рис. 12.6). Реакциягидроксилирования катализируется специфической фенилаланин-4-монооксигеназой, которая в качествекофермента содержит, как все другие гидроксилазы, тетрагидро-биоптерин. Блокирование этой реакции, наблюдаемое при нарушении синтеза фенилаланин-4-монооксигеназы в печени, приводит к развитию тяжелойнаследственной болезни – фенилкетонурии (фенилпировиноградная олигофрения). В процессетрансаминирования тирозин превращается в n-оксифенилпировиноградную кислоту, которая под действием специфической оксидазы подвергается окислению, декарбоксилированию, гидро-ксилированию и внутримолекулярному перемещению боковой цепи с образованием гомогентизиновой кислоты; эта реакциятребует присутствия аскорбиновой кислоты, роль которой пока не выяснена. Дальнейшее превращениегомогентизиновой кислоты в малеилацетоуксусную кислоту катализируется оксидазой гомогентизиновой кислоты. Малеилацетоуксус-ная кислота под действием специфической изомеразы в присутствии глу-татиона превращается в фумарилацетоуксусную кислоту, подвергающуюся гидролизу с образованием фумаровой и ацетоуксусной кислот. Фенилаланин и тирозин являются также предшественниками меланинов. В этом важном биологическом процессе, обеспечивающем пигментацию кожи, глаз, волос, активное участие принимает фермент тирозиназа.

Фенилкетонурия (фенилпировиноградная олигофрения, болезнь Феллин-га) — одно из наиболее частых наследственных заболеваний, чаще обусловлено недостаточностью фенилаланин гидроксилазы (261600, 12q24.1); при отсутствии своевременного лечения приводит к тяжёлой умственной отсталости. Тип наследования аутосомно-рецессивный. Больные гомозиготны по гену фенилкетонурии, а их родители гетерозиготны.

Вследствие дефекта гена фенилаланин гидроксилазы (ФАГ-ген) развивается недостаточность фермента, и как следствие наступает блок в нормальном превращении фенилаланина в аминокислоту тирозин [Гинтер Е.К., 2001]. Фенилаланин накапливается в организме и его концентрация в крови повышается в 10-100 раз. Далее он превращается в фенилпировиноградную кислоту, оказывающую токсическое влияние на нервную систему. Накопление фенилаланина в организме происходит постепенно, поэтому клиническая картина развивается медленно. В связи с этим очень важна ранняя диагностика фенилкетонурии.

54. Перевар.И всасыв. Белков в жкт. Протеолитич. Ферменты и регуляция их активности. Транспорт а,к в клетки

В желудке имеются все условия для переваривания белков. Во-первых, в желудочном соке содержится активный фермент пепсин. Во-вторых, благодаря наличию в желудочном соке свободной соляной кислоты для действия пепсина создается оптимальная среда (рН 1,5–2,5). Следует особо указать на существенную рольсоляной кислоты в переваривании белков: она переводит неактивный пепсиноген в активный пепсин, создает оптимальную среду для действия пепсина; в присутствии соляной кислоты происходят набухание белков, частичная денатурация и, возможно, гидролиз сложных белков. Кроме того, соляная кислота стимулирует выработку секретина в двенадцатиперстной кишке, ускоряет всасывание железа и оказывает бактерицидное действие.

Ввиду исключительной роли соляной кислоты в переваривании белков были предприняты попытки объяснить механизм ее секреции в желудке. В деталях этот механизм до сих пор не выяснен, однако имеющиеся данные свидетельствуют, что образующиеся при диссоциации хлорида натрия в крови ионы хлора диффундируют через клеточную мембрану и соединяются с ионами водорода, которые в свою очередь освобождаются придиссоциации угольной кислоты, образующейся в обкладочных клетках из конечных продуктов обмена – Н2 О и СО2. Образовавшаяся соляная кислота затем экскретируется обкладочными клетками в полость желудка.Равновесие ионов Сl между кровью и обкладочными клетками достигается поступлением отрицательно заряженных ионов HCO3из клеток в кровь взамен ионов Сl, поступающих из крови в клетки. Предполагается участие АТФ, поскольку синтез соляной кислоты требует энергии.

Следует отметить, что при некоторых поражениях желудка (обычно при воспалительных процессах) могут нарушаться секреция соляной кислоты и соответственно переваривание белков.

Пепсин, катализирующий гидролиз пептидных связей, образованных остатками ароматических аминокислот, расщепляет практически все природные белки. Исключение составляют некоторые кератины, протамины,гистоны и мукопротеины. При их гидролизе образуются различного размера пептиды и, возможно, небольшое число свободных аминокислот. В желудочном соке детей грудного возраста, а также в секрете четвертого желудочка телят и других молодых жвачных животных содержится отличный от пепсина весьма активныйфермент реннин. Он катализирует свертывание молока (превращение растворимого казеиногена в нерастворимый казеин). У взрослых людей эту функцию выполняет пепсин. Механизм этого процесса, несмотря на кажущуюся простоту, в деталях пока не выяснен. Предполагают, что реннин превращает растворимый казеиноген молока в параказеин, кальциевая соль которого нерастворима, и он выпадает в осадок. Интересно отметить, что после удаления ионов Са2+ из молока образования осадка не происходит. Наличие активного реннина в желудочном соке детей грудного возраста имеет, по-видимому, важное физиологическое значение, поскольку при свертывании молока, являюще-

гося основным пищевым продуктом в этом возрасте, резко замедляется продвижение нерастворимого казеиначерез пищеварительный канал, в результате чего он дольше подвергается действию протеиназ. Дальнейшее превращение белков пищи осуществляется в тонкой кишке, где на белки действуют ферментыпанкреатического и кишечного соков. Трипсин и химотрипсин действуют на белки аналогично пепсину, разрывают другие внутренние пептидные связи; оба фермента наиболее активны в слабощелочной среде (рН 7,2–7,8). Благодаря гидролитическому действию на белки всех трех эндопептидаз (пепсин, трипсин,химотрипсин) образуются различной длины пептиды и некоторое количество свободных аминокислот. Дальнейший гидролиз пептидов до свободных аминокислот осуществляется под влиянием группы ферментов– пептидаз. Помимо панкреатической карбоксипептидазы, на пептиды действуют кишечная аминопептидаза и разнообразные дипептидазы. Эта группа ферментов относится к экзопептидазам и катализирует гидролизпептидной связи 

Точкой приложения аминопептидазы является пептидная связь с N-кон-ца пептида. Карбоксипептидазаразрывает пептидную связь с противоположного С-конца пептида. Эти ферменты отщепляют по однойаминокислоте от полипептида.

В итоге остаются дипептиды, на которые действуют специфические дипептидазы, при этом образуются свободные аминокислоты, которые затем всасываются.Из других ферментов протеолиза следует упомянуть об эластазе и коллагеназе поджелудочной железы, гидролизующих соответственно эластин и коллаген. Топографически основные процессы гидролиза белков, как и углеводов и жиров, протекают на поверхности слизистой оболочки кишечника (так называемое пристеночноепищеварение, по A.M. Уголеву).

Продукты гидролиза белков всасываются в пищеварительном тракте в основном в виде свободныхаминокислот. Кинетика всасывания аминокислот в опытах in vivo и in vitro свидетельствует, что аминокислоты, подобно глюкозе, всасываются свободно с ионами Na+. Для лизина, цистеина и цистина, глицина и пролина, очевидно, существует более одной системы транспорта через стенку кишечника. Некоторые аминокислотыобладают способностью конкурентно тормозить всасывание других аминокислот, что свидетельствует о вероятном существовании общей переносящей системы или одного общего механизма. Так, в присутствиилизина тормозится всасывание аргинина, но не изменяется всасывание аланина, лейцина и глутамата.

Современные представления о проблеме транспорта веществ через мембраны (включая мембраныэпителиальных клеток кишечника) не позволяют точно охарактеризовать молекулярный механизм транспортааминокислот. Существует два представления, по-видимому, дополняющих друг друга о том, что требуемая для активного транспорта энергия образуется за счет биохимических реакций (это так называемый направляемый метаболизмом транспорт) или за счет энергии переноса другого транспортируемого вещества, в частности энергии движения ионов Na+(или других ионов) в клетку.