Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
perevod_rus2.docx
Скачиваний:
4
Добавлен:
15.09.2019
Размер:
652.95 Кб
Скачать

Глава 2. Ldpc кодов и их анализ

Целью этой главы является рассмотрение необходимых сведений о LDPC кодах, их структуры, алгоритмов декодирования и существующих методов анализа этих алгоритмов декодирования.

2.1 Графические модели и декодирование методом передачи сообщений

Графические модели широко используются во многих классических многомерных вероятностных системах, изучаются в таких областях, как статистика, теория информации, распознавание образов и теория кодирования.

Одним из важных шагов в графическом представлении кодов стало введение фактора графов [29], которые сделали процесс анализа гораздо яснее. Концепция фактор графов является достаточно общей. Фактор граф помогает разложить многомерную функцию на более простые функции. Например, на рис. 2.1 показаны фактор графы следующего разложения:

На рис. 2.1 переменные показаны кружками, а функции квадратами. Функция является смежной для всех её аргументов.

Совместная функция плотности вероятности (PDF-функция) часто представляется в виде местных PDF-функций, каждая из которых является функцией от многих переменных. Таким образом, фактор граф является графической моделью, которая более удобна для решения проблем, имеющих статистическую сторону.

Рисунок 2.1:Фактор граф, представляющий разложение равенства (2.1) .

Когда фактор граф циклически свободен, то есть, когда есть более чем один путь между каждой парой узлов графа, используя sum-product алгоритм [29], все предельные PDF-функции могут быть вычислены. Sum-product алгоритм эквивалентен алгоритму Перла в общих байесовских сетях [29]. Он сводит задачу маргинализации глобальной функции на множество локальных операций передачи сообщений.

Термин «передающий сообщения декодер» берет свое название от способа передачи сообщений sum-product алгоритма. Важность декодеров, передающих сообщения в том, что их декодирующая сложность растет линейно с длиной кода. Следует отметить, что декодирование методом передачи сообщений является неоптимальным, если основной фактор граф имеет циклы. Тем не менее, использование этого алгоритма на графах с одним или более циклами в контексте кодирования на удивление хорошо. Похоже, что хорошие показатели являются результатом большой длины большинства циклов в графе, в результате чего зависимость сообщений распадается [30].

В последних работах, таких как [23,31-34] исследуется влияние циклов на работоспособность этого алгоритма. В большинстве случаев анализа кодов, определённых на графах, тем не менее, эффект от циклов игнорируется.

Рисунок 2.2: Двудольный граф, представляющий собой проверочной код.

2.2 Ldpc коды: структура

LDPC код является линейным блочным кодом и, поэтому имеет проверочную матрицу. Существенным отличием LDPC кодов от обычных линейных кодов является матрица проверки четности, в которой число ненулевых элементов на много меньше, чем общее число записей, которые могут быть найдены для неё.

Графическое представление LDPC кодов настолько популярно, что большинство людей думает и говорит о LDPC кодах с точки зрения структуры их фактор графов. Как упоминалось ранее, графическое представление линейных кодов началось с графов Таннера [4]. Здесь мы сосредоточимся на фактор графах, в связи с их более общим характером происхождения.

Фактор граф всегда является двудольным графом, вершины которого разбиты на переменные узлы и функции (проверки) узлов [29,35]. Мы считаем удобным взять двудольный граф и показать, как двоичный линейный код может быть из него сформирован.

Рассмотрим двудольный граф Q с n левыми узлами (назовем их переменными узлами) и r правыми узлами (назовем их проверочными узлами) и E рёбрами. На Рис. 2.2 показан пример такого двудольного графа. Обратите внимание, что на этом рисунке переменные узлы показаны кружками, а проверочные узлы - квадратами, так же, как и для всех фактор графов.

Переменный узел является бинарной переменной из алфавита {0,1}, а проверочный узел является ограничительным для соседних переменных узлов, т.е.

где есть множество всех «соседей» и - суммирование по модулю два.

В результате получается двоичный линейный код длины и размерности с равенством тогда и только тогда, когда все проверочные ограничения линейно независимы. Проверочной матрицей этого кода является матрица смежности графа т. е. , входящие в равно 1, тогда и только тогда, когда ( -ый узел проверки) подключен к ( -ому переменному узлу).

LDPC коды могут быть расширены до , рассматривая множество ненулевых весов для рёбер . Проверочная матрица в этом случае формируется с помощью множества весов. Другими словами . В оставшейся части данной работы мы предполагаем, что коды – двоичные, если не указано иное.

Это легко объясняется, если предположить, что любой двудольный граф приводит к линейному коду. В случае LDPC кодов число E ребер в фактор графе, сравнимое с количеством ребер в построенном случайно двудольном графе, то есть двудольном графе, который с вероятностью имеет грань между левой вершиной и правой вершиной очень мало. Как мы увидим позже, для LDPC кода с фиксированной скоростью , число ребер порядка , а в случайно построенном двудольном графе ребер. Таким образом, с ростом , величина уменьшается, что приводит к «редкому» коду.

LDPC коды, в зависимости от их структуры, могут быть классифицированы, как равномерные или неравномерные. Равномерные коды имеют переменные узлы с фиксированными степенями и проверочные узлы с фиксированными степенями. Обозначая степень переменных узлов, как и степень проверочных узлов, как получим:

Таким образом, скорость кода R может быть вычислена, как

Если строки линейно независимы, то . В ряде работ величина называется проектируемой скоростью [12], но обычно возможная линейная зависимость между строками игнорируется и проектируемая скорость считается равной действительной.

Теперь рассмотрим ансамбль равномерных LDPC кодов с переменной степенью проверочной степенью и длиной . Если достаточно велико, обычное поведение этого ансамбля почти во всех случаях концентрируется вокруг ожидаемого поведения [12]. Следовательно, равномерные LDPC коды относятся к своим переменным и проверочным степеням и их длинам. Когда производительность и характеристики бесконечно долгие (или достаточно долгие) на равномерные LDPC коды следует обратить внимание, они будут представлены только степенью их переменного и проверочного узла. Например, (3, 6) LDPC код ссылается на код с переменным узлом степени 3 и проверочным узлом степени 6. Проектируемая скорость этого кода из (2.3) 1/2.

Хотя показатели равномерных LDPC кодов близки к пропускной способности, они показывают больший интервал от пропускной способности, чем турбо коды. Основное преимущество равномерных LDPC коды над турбо кодами заключается в их лучшей, так называемой, "ошибке нижнего уровня". Из Рис. 1.2 следует, что, по сравнению с низким SNR, для умеренных и высоких SNR, BER кривая турбо кодов имеет меньший наклон. Это явление называется ошибкой пола. Рис. 3 в [36] показывает качественное поведение BER против для турбо кодов и классифицирует различные регионы кривой BER. Явление ошибки пола является фундаментальным свойством из-за низкой свободного расстояния турбо-коды [3]. Таким образом, турбо кодов будет испытывать ошибки пола даже при оптимальном декодировании. LDPC коды однако, как заметил в [9] и его можно увидеть на рис. 1,2 лучше ошибка пола. Кроме того, в работе [37], что LDPC кодов может достичь предела Шеннона при оптимальном декодировании.

LDPC коды стали более привлекательными, когда Luby соавт. показали, что разрыв в мощности могут быть сокращены с помощью нерегулярно коды LDPC [17].LDPC код называется нерегулярной, если, по его коэффициент графика, не все переменные (и / или проверить) узлы имеют равные степени. Тщательно проектирования неравномерность графика, коды, которые выполняют очень близко к мощности можно найти [13,17,21,28]. Ансамбль нерегулярные коды LDPC определяется его переменным распределением степени края Л = {Л2, Аз, ...} и его проверка края степень распределения V - {р2, Рз-• • •}, где обозначает долю ребра на переменную узлов степени г и р обозначает долю ребра на проверку узлов степени у. Другой способ описания той же ансамбль кодов, представляя последовательности и V с их порождающих многочленов Л (ж) = Yh и р (х) - YliPix% 1 - Оба обозначения, введенные в [17] и были использованы влитературы впоследствии. Обратите внимание, что график характеризуется с точки зрения доли краям каждой ступени, а не в узлах каждой степени. Позже мы увидим, что это представление является более удобным. В оставшейся части этого тезиса, по переменным (чек) степень распределения,

мы имеем в виду переменную (чек) края степень распространения. Как и регулярные коды, показано в [12], что среднее поведение почти во всех случаях ансамбля неправильный код сосредоточен вокруг ожидаемого поведения, когда код достаточно велик. Кроме того, ожидаемое поведение сходится к циклу без дела [12]. Учитывая степень распределения LDPC код и число ребер е, легко видеть, что число переменных узлов п

n = EJ2~ = E f X(x)dx, (2.4)

. г J о

и число контрольных узлов г

r = E= E fp(x)dx. (2.5)

< 1

Поэтому дизайн скорости код будет

Я = 1-ЦлГ (2-6)

или, что эквивалентно

fn p(x)dx

Д = 1 — ° . (2.7)

4x)dx

Найти хорошего асимптотически долго семьи нерегулярно коды эквивалентно нахождению хорошее распределение степени. Очевидно, что для различных приложений, различные атрибуты являются предпочтительными. Задача нахождения степени распределения в результате чего семейный кодекс с некоторыми нужными свойствами не является тривиальной задачей и будет одним из направлений этого тезиса. Мы пытаемся сформулировать исполнении семейного кодекса с точки зрения степени его распределения в легкой форме, чтобы обеспечить максимальную гибкость в стадии проектирования, и в то же время мы избегаем слишком упрощение, чтобы наши предсказал результаты, близкие к реальным результатам

Формулы

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]