Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
С. А. Мандрыкин.docx
Скачиваний:
586
Добавлен:
28.08.2019
Размер:
4.93 Mб
Скачать
  1. Глава третья. Особенности конструктивных элементов и узлов генераторов и синхронных компенсаторов

    1. Особенности конструктивного выполнения турбогенераторов

В турбогенераторах с водородным охлаждением корпус газоплот­ный и должен выдерживать гидравлическое испытание давлением во­ды, превышающим номинальное давление водорода в генераторе на 0,5 МПа в течение 30 мин. Его торцевые щиты должны быть не только

газоплотными, но и иметь достаточную жесткость. У машин мощно­стью 300 МВт и выше корпус разъемный. Характерный, хотя и не ча­стый вид повреждения корпуса — появление трещин в сварных швах в результате усталости металла от длительной вибрации. В генерато­рах с водородным охлаждением трещины вызовут утечку водорода.

Сердечник турбогенераторов, гидрогенераторов и компенсаторов собирается из листов высоколегированной горячекатаной стали марок 1513, 1514 и холоднокатаной марки 3413 и др. толщиной 0,5 мм. При мощности генераторов выше 100 МВт применяется холоднокатаная сталь, листы которой располагаются так, чтобы направление магнит­ного потока в спинке сердечника совпадало с направлением прокатки стали. Из листов стали набираются пакеты, а из пакетов — сегменты сердечника. Вентиляционные каналы между пакетами выполняются при помощи распорок (тавриков) из немагнитной стали.

По мере сборки сердечника ведется его опрессовка с созданием давления 1,0—1,7 МПа. Окончательно опрессованный сердечник за­крепляется нажимными кольцами из немагнитной стали и стяжными болтами, пропускаемыми за спинкой сердечника. Под нажимные коль­ца устанавливаются нажимные пальцы из немагнитной стали, создаю­щие опрессовку крайних пакетов в зоне зубцов.

Ослабление прессовки сердечника вызовет вибрацию листов ак­тивной стали, что может привести к повреждению изоляции между ни­ми и появлению вихревых токов, создающих дополнительный нагрев стали. Вибрация листов стали в зубцовой зоне может вызвать истира­ние изоляции стержней обмотки статора или поломку листов и про-резание изоляции отломившейся частью листа. Признаком ослабления прессовки стали является появление на поверхности спинки или в рас­точке сердечника налета ржавчины от контактной коррозии в месте соприкосновения вибрирующих листов.

Обмотки статора выполняются двухслойными корзиночного типа. В каждом пазу укладываются два стержня, принадлежащих двум раз­ным секциям. В этих обмотках применяется непрерывная изоляция прямого участка и лобовых частей стержня наложением микаленты, изготовляемой на асфальтовом масляном лаке. При изолировании стер­жень подвергается многократной компаундировке, заключающейся в сушке его в вакууме при температуре 150—160 °С после наложения нескольких слоев микаленты, и последующей пропитке под давлением компаундом, состоящим почти из чистого битума. При сушке из изо­ляции стержней удаляются влага, воздух и летучие составляющие ла­ка, а при пропитке под давлением заполняются все поры, что препят­ствует затем проникновению в изоляцию влаги и воздуха.

Микалентная изоляция длительное время являлась основным ви­дом изоляции статорной обмотки турбо- и гидрогенераторов. Однако в связи с ростом единичных мощностей генераторов и увеличением в

1,5—2 раза удельных токовых нагрузок в обмотках стала сказываться ее недостаточная механическая прочность в нагретом состоянии. Поэ­тому в настоящее время для мощных генераторов применяют терморе­активную изоляцию.

В термореактивной изоляции основным изолирующим материалом является стекломикалента, изготовленная из лепестков слюды и под-

Рис. 3.1. Сечение стержня статора с косвенным охлаждением (а), с непосредственным охлаждением водородом (б) и непосредственным охлаждением водой (в):

1 — клин; 2 — корпусная изоляция стержня; 3—сплошной элементарный провод­ник; 4—полый элементарный проводник; 5 — трубка для газа

ложки из стеклоткани. Связующим элементом служит искусственная термореактивная смола (главным образом эпоксидная), затвердеваю­щая при температуре 150—160° С и не размягчающаяся при повтор­ных нагреваниях. Термореактивная изоляция имеет лучшие электриче­ские характеристики. Механическая прочность новой изоляции зна­чительно выше, что позволяет выполнить более плотную обтяжку стер­жней лентой. Для исключения вредного влияния ионизации между стержнем и пазом поверх изоляции стержни покрываются полупрово­дящей асбестовой лентой.

На рис. 3.1 показаны сечения стержня статора для различных си­стем охлаждения. Непосредственное охлаждение обмотки статора в генераторах серии ТГВ выполняется путем циркуляции водорода по трубкам из нержавеющей стали, уложенным между двумя рядами элементарных проводников стержня, а в генераторах серии ТВВ — за счет циркуляции воды (дистиллята) по полым проводникам стержня, уложенным вперемежку со сплошными элементарными проводниками. Подвод и отвод воды к стержням статора от кольцеобразных коллек­торов генератора выполняются при помощи эластичных шлангов из фторопласта, обладающих высокой электрической прочностью. В пазах стержни плотно закрепляются клиньями из гетинакса или волокнита.

В крупных генераторах (мощностью 150 МВт и более) соединения стержней выполняются твердым припоем ПСр-15 (15 % серебра). Твердая пайка обеспечивает хороший электрический контакт, если да­же пропаялось только 50 % контактной поверхности.

Ротор крупного турбогенератора выполняется из цельной поковки хромоникельмолибденовой или хромоникельмолибденованадиевой ста­ли, обладающей весьма высокими механическими свойствами. Ротор турбогенератора меньшей мощности изготовляется из углеродистой стали повышенного качества.

Для укладки обмотки на бочке ротора профрезовываются пазы. По оси полюсов, где пазы отсутствуют, остаются большие зубцы. Жесткость ротора по оси зубцов значительно выше, чем по оси, пер­пендикулярной к ним. Для уменьшения вибрации ротора, возникающей вследствие неодинаковой его жесткости, в больших зубцах выполня­ются продольные пазы, заполняемые магнитными клиньями (генерато­ры серии ТГВ), или поперечные пазы (генераторы серии ТВВ).

Ротор турбогенератора кроме воздействия центробежных сил ис­пытывает большие напряжения от знакопеременных изгибающих сил, так как, несмотря на его вращение, он остается прогнутым вниз. Вы­сока и его тепловая нагрузка. В турбогенераторах 100—150 МВт с по­верхностным охлаждением потери в роторе на 1 м3 активного объема в 1,4—1,5 раза выше соответствующих потерь в статоре. Чтобы выдер­жать большие механические нагрузки, изоляция обмотки ротора долж­на иметь высокую механическую прочность, сохраняющуюся при тем­пературе 130—150 °С.

Для предотвращения деформации от центробежных сил лобовые части обмотки ротора закрепляются роторными бандажами (рис. 3.2), состоящими из бандажного и центрирующего колец. Бандажное кольцо представляет собой наиболее напряженно работающий узел ротора, так как оно испытывает центробежные усилия не только от собствен­ной массы (около 60% всей нагрузки), но и от лобовых частей об­мотки ротора, а также усилия, вызванные посадкой с натягом. Поэто­му материал, из которого изготовляются бандажные кольца, должен иметь очень высокие прочностные и пластические свойства. В генера­торах 30 МВт и выше бандажные кольца изготовляются из немагнитной высокопрочной хромоникельмарганцевой стали, подвергающейся сложной обработке.

Роторные бандажи подразделяются на двухпосадочные и однопо-садочные. В бандажах с двумя жесткими посадками на рис. 3.2, а (од­на — на бочку ротора и вторая — через центрирующее кольцо на вал ротора) носик бандажного кольца из-за прогиба вала ротора при его вращении стремится переместиться относительно бочки ротора. Такие

Рис. 3.2. Конструкция ротор­ных бандажей:

а — жесткая посадка на бочку ивал (две посадки); б — посадка наполуэластичное центрирующее

кольцо и на бочку ротора; в — по­садка только на бочку ротора (кон­сольная

бандажи работают удовлетворительно только в турбогенераторах мощ­ностью не выше 30 МВт, имеющих сравнительно короткие роторы.

В турбогенераторах 50 МВт и выше из-за увеличения длины и прогиба ротора знакопеременные силы, вызывающие перемещение но­сика бандажного кольца, настолько возрастают, что от их длительного воздействия появляются наклепы, трещины и сколы на посадочных ме­стах зубцов бочки ротора и кромок бандажей, ослабляется натяг в посадке, в результате чего в тех же местах появляются ожоги от на­грева токами, возникающими в роторе при несимметричных режимах. В целях уменьшения усилий, действующих на носик бандажа, приме­няют полуэластичные центрирующие кольца с зигзагообразной выточ­кой (рис. 3.2, б) или с более надежной выточкой в виде диафрагмы. Надежность работы двухпосадочиых бандажей повышается установ­кой под носик бандажа изоляционной прокладки из стеклотекстолита.

Посадка с эластичным центрирующим кольцом и изоляционной прокладкой под носиком бандажа, применяемая в турбогенераторах серии ТВФ, обеспечивает надежную работу бандажного узла в рото­рах, масса которых не превышает 50 т.

В турбогенераторах серии ТГВ применяются бандажи с одной по­садкой на бочку ротора — консольные (рис. 3.2, в). Центрирующее кольцо в этом бандаже служит только для опоры обмотки ротора и осевом направлении и с валом не соприкасается, благодаря чему полностью исключаются нежелательные воздействия на посадочные места бандажа от прогиба вала ротора. От смещения в осевом направлении бандажное кольцо удерживается кольцеобразной шпонкой.

На бочке ротора бандажи удерживаются при помощи специальной гайки, навинчиваемой на кромку бандажа. На бочке ротора эта гайка закреплена при помощи кольцеобразной шпонки.

Рис. 3.3. Укорочение вит­ков в лобовой части

При номинальной частоте вращения вит­ки обмотки ротора турбогенератора прижи­маются центробежной силой к клиньям и друг другу настолько сильно, что возникаю­щие между ними силы трения защемляют витки и не позволяют им удлиняться от на­грева при нагрузке. В результате в витках возникают силы сжатия. Если напряжение от сил сжатия превысит предел текучести меди, то после снятия нагрузки и остывания обмотки в витках появится остаточная де­формация—они укоротятся. Наибольший нагрев имеют витки, лежащие внизу паза. От многократного нагрева и остывания они

и укоротятся на большую величину (рис. 3.3). Деформация витков мо­жет привести к их замыканию, а в худшем случае и к разрушению меди проводников. Поэтому у крупных турбогенераторов обмотка ротора из­готовляется из меди с присадкой серебра (0,07-0,15 %), обладающей повышенной прочностью.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]