Скачиваний:
50
Добавлен:
01.05.2014
Размер:
79.36 Кб
Скачать

27.

Матрицы элементарных преобразований строк

Матрица линейного преобразования

В  примере 19.4 было показано, что преобразование -мерного пространства, заключающееся в умножении координатных столбцов векторов на фиксированную матрицу, является линейным преобразованием. В этом разделе мы покажем, что все линейные преобразования конечномерного пространства устроены таким же образом.

Пусть  -- -мерное линейное пространство, в котором задан базис ,  -- линейное преобразование. Возьмем произвольный вектор . Пусть  -- его координатный столбец. Координатный столбец вектора обозначим .

Запишем разложение вектора по базису пространства . Для образа этого вектора получим (19.2)

Векторы имеют какие-то координатные столбцы, обозначим их , , ..., соответственно. В этой записи первый индекс показывает номер координаты, а второй индекс -- номер вектора. Соответственно,

Подставим это выражение в равенство (19.2) и, используя  предложение 14.3, изменим порядок суммирования

Это равенство означает, что -той координатой вектора служит .

Составим матрицу из координатных столбцов векторов , ...,

Вычислим произведение матрицы на столбец

Мы видим, что -ый элемент столбца совпадает с -ой координатой вектора . Поэтому

(19.3)

Это означает, что в выбранном базисе действие любого линейного преобразования сводится к умножению матрицы на координатный столбец вектора.

Матрица называется матрицей линейного преобразования . Еще раз напомним, как она составлена: первый столбец является координатным столбцом образа первого базисного вектора, второй столбец -- координатным столбцом образа второго базисного вектора и т.д.

        Пример 19.5   Найдем матрицу линейного преобразования из  примера 19.1.

Выберем какой-нибудь базис . Тогда

Следовательно, первый столбец матрицы имеет вид . Аналогично

Второй столбец матрицы имеет вид . В итоге

Соседние файлы в папке Ответы на экзаменационные вопросы по АиГ