Скачиваний:
48
Добавлен:
01.05.2014
Размер:
41.47 Кб
Скачать

17.

Линейные операции над матрицами и векторами.

* немного не по теме! По теме не нашёл

Линейные операции над векторами.

Определение 5.4. Суммой a + b векторов a и b называется вектор, идущий из начала вектора а в конец вектора b, если начало вектора b совпадает с концом вектора а.

b

a+b

a

Замечание. Такое правило сложения векторов называют правилом треугольника.

Свойства сложения:

Свойство 1. a + b = b + a.

Доказательство. Приложим векторы а и b к общему началу и рассмотрим параллелограмм

AOBC. Из определения 5.4 и треугольника ОВС следует, что ОС=b+a, а из треугольника

ОАС – ОС=а+b. Свойство 1 доказано.

В а С Замечание. При этом сформулировано еще одно правило

b b сложения векторов – правило параллелограмма: сумма

a+b= векторов a и b есть диагональ параллелограмма, построенно-

=b+a го на них как на сторонах, выходящая из их общего начала.

О А

а

Свойство 2. (a+b)+c=a+(b+c).

b Доказательство. Из рисунка видно, что

A a+b B (a+b)+c=(OA+AB)+BC=OB+BC=OC,

a a+(b+c)=OA+(AB+BC)=OA+AC=OC.

Свойство 2 доказано.

b

O c С

Свойство 3. Для любого вектора a существует нулевой вектор О такой, что a+О=а.

Доказательство этого свойства следует из определения 5.4.

Свойство 4. Для каждого вектора a существует противоположный ему вектор a/ такой, что а+а/.

Доказательство. Достаточно определить a/ как вектор, коллинеарный вектору a, имеющий одинаковую с ним длину и противоположное направление.

Определение 5.5. Разностью а – b векторов а и b называется такой вектор с, который в сумме с вектором b дает вектор а.

a a-b

b

Определение 5.6. Произведением ka вектора а на число k называется вектор b, коллинеарный вектору а, имеющий модуль, равный |k||a|, и направление, совпадающее с направлением а при k>0 и противоположное а при k<0.

Свойства умножения вектора на число:

Свойство 1. k(a + b) = ka + kb.

Свойство 2. (k + m)a = ka + ma.

Свойство 3. k(ma) = (km)a.

Следствие. Если ненулевые векторы а и b коллинеарны, то существует такое число k, что b = ka.

В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Рассмотрим систему линейных уравнений:

Разделим обе части 1–го уравнения на a11  0, затем:

1) умножим на а21 и вычтем из второго уравнения

2) умножим на а31 и вычтем из третьего уравнения

и т.д.

Получим:

, где d1j = a1j/a11, j = 2, 3, …, n+1.

dij = aij – ai1d1j i = 2, 3, … , n; j = 2, 3, … , n+1.

Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.

Соседние файлы в папке Ответы на экзаменационные вопросы по АиГ