Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vse_voprosy (2).doc
Скачиваний:
9
Добавлен:
03.08.2019
Размер:
920.06 Кб
Скачать

35 Вопрос

Обратимые и необратимые процессы. Круговые процессы ( циклы) и их изображение на термодинамических диаграммах. Принцип ТомсонаТепловые двигатели и холодильные машины.

Процесс называют обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым.

Реальные процессы необратимы, в них всегда происходит диссипация ( потеря энергии) из-за трения, теплопроводности и т.д.

В прямом направлении необратимые процессы протекают самопроизвольно, а для осуществления одновременного протекания некоторых компенсирующих процессов:

1) Формулировка Клаузиуса: невозможен процесс, единым результатом которого является передача теплоты от холодного тела к горячему.

2) Формулировка Кельвина: невозможен процесс, единым результатом которого является совершение работы за счет охлаждения теплового резервуара.

3) Никакая тепловая машина периодического действия не может иметь КПД, превышающий КПД цикла Карно при тех же температурах нагревателя и холодильника.

4) Энтропия S изолированной системы не может убывать при любых происходящих в ней процессах dS>=0.

Круговым процессом (или циклом) называется процесс, при котором система, проходя через ряд состояний, возвращается в первоначальное. На диаграмме цикл изображается замкнутой кривой (рис. 1). Цикл, который совершает идеальный газ, можно разбить на процессы расширения (1—2) и сжатия (2—1) газа. Работа расширения (равна площади фигуры 1a2V2V11) положительна (dV>0), работа сжатия (равна площади фигуры 2b1V1V22) отрицательна (dV<0). Следовательно, работа, которую совершает газ за цикл, равен площади, охватываемой замкнутой кривой. Если за цикл совершается положительная работа A=∫pdV>0 (цикл идет по часовой стрелке), то он называется прямым (рис. 1, а), если за цикл осуществляется отрицательная работа A=∫pdV<0 (цикл идет против часовой стрелки), то он называется обратным (рис. 1, б).

Прямой цикл применяется в тепловых двигателях — периодически действующих двигателях, которые совершают работу за счет полученной извне теплоты. Обратный цикл применяется в холодильных машинах — периодически действующих установках, в которых за счет работы внешних сил теплота переходит к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, значит, полное изменение внутренней энергии газа есть нуль. Поэтому первое начало термодинамики для кругового процесса

т. е. работа, которая совершается за цикл, равна количеству теплоты, полученной извне. Однако в результате кругового процесса система может теплоту как получать, так и отдавать, поэтому

где Q1 — количество теплоты, которая получила система, Q2 — количество теплоты, которое отдала система. Поэтому термический коэффициент полезного действия для кругового процесса

Согласно формулировке Томсона, процесс, при котором работа переходит в тепло без каких-либо иных изменений состояния системы, необратим, т. е. невозможно полностью преобразовать в работу всё тепло, взятое от тела, не производя никаких др. изменений состояния системы (принцип Tомсона). Принцип Томсона эквивалентен утверждению о невозможности вечного двигателя 2-го рода.

Тепловые машины могут иметь разную конструкцию. Это может быть паровой двигатель, двигатель внутреннего сгорания, реактивный двигатель. Любой тепловой двигатель работает по замкнутому циклу и имеет нагреватель, рабочее тело двигателя и холодильник. В процессе работы теплового двигателя рабочее тело двигателя получает от нагревателя количество теплоты Q1, совершает работу A и передает холодильнику количество теплоты Q2<Q1. Для замкнутого цикла изменение внутренней энергии равно нулю (∆U=0). Следовательно, согласно I началу термодинамики, работа, совершаемая двигателем, равна A=Q1-Q2 Коэффициентом полезного действия (КПД) теплового двигателя называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя η=Q1-Q2/Q1 КПД тепловой машины всегда меньше единицы η=1-Q2/Q1 Следовательно, невозможно всю теплоту превратить в работу. Ученые всегда стремились повысить КПД.

В первой половине XIX в. французский ученый Сади Карно показал, что максимально возможное значение КПД тепловой машины равно ηmax=T1-T2/T1=1-T2/T1, где T1 - температура нагревателя, T2 - температура холодильника. Из сравнения уравнений (4.18) и (4.19) следует, что ηmax ≥ η или 1-T2/T1≥1Q2/Q1. Отсюда Q2/T2≥Q1/T1 На основании этого неравенства можно прийти к понятию энтропия и второму началу термодинамики. Повышение КПД тепловых двигателей и приближение его к максимально возможному значению - важнейшая техническая задача. Однако, все тепловые двигатели выделяют большое количество теплоты, что называется тепловым загрязнением, и выбрасывают в атмосферу вредные для растений и животных химические соединения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]