Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
опорные лекции_2001.doc
Скачиваний:
19
Добавлен:
01.08.2019
Размер:
2.2 Mб
Скачать

13. Собственные числа и собственные векторы

Пусть дано векторное пространство Rn.

Если существует правило (L), по которому любому вектору X  Rn ставится в соответствие единственный вектор Y Rn, то такое правило называют оператором

или преобразованием в пространстве Rn, причем вновь полученный вектор Y называют образом данного вектора Х, а данный вектор Х называют прообразом вновь полученного вектора Y.

Зададим квадратную матрицу n-го порядка А. И пусть преобразование состоит в том, что каждому вектору X Rn ставится в соответствие вектор

13.1.

Матрицу А, осуществляющую это преобразование называют матрицей оператора L.

Если оператор задан квадратной матрицей А, то он обладает двумя очень важными свойствами:

13.2. При сложении прообразов образы тоже складываются

.

13.3. Если прообраз умножить на скаляр, то образ тоже умножится на этот скаляр

.

Если оператор обладает свойствами 11.2. и 11.3., то его называют линейным оператором. Следовательно, квадратную матрицу n-го порядка А, столбцами которой являются базисные векторы пространства Rn, можно рассматривать как матрицу линейного оператора. При этом переход к новому базису преобразует эту матрицу в матрицу , где Р - матрица перехода к новому базису, причем координаты новых базисных векторов в старом базисе образуют ее столбцы.

Векторному пространстве Rn могут принадлежать такие векторы Х, для которых действие линейного оператора с матрицей А равносильно умножению на число.

13.4. Если для данного вектора Х и данного линейного оператора с матрицей А найдется такое число, для которого выполняется условие , то такой вектор Х называют собственным вектором матрицы А, а число - ее собственным числом.

Если дана матрица линейного оператора А, то все собственные числа этой матрицы можно найти из матричного уравнения . В этом уравнении Е - единичная матрица, О - нулевой вектор. Оно равносильно однородной системе линейных уравнений, которая имеет ненулевое решение только в том случае, когда определитель системы равен нулю: . Это уравнение называют характеристическим уравнением матрицы (оператора).

Левая часть характеристического уравнения преобразуется в многочлен n-ой степени относительно неизвестного . Такое уравнение имеет ровно n корней среди которых могут быть или не быть вещественные корни. Если окажется, что все корни вещественные различные, то матрица имеет n различных вещественных собственных чисел.

Если матрица линейного оператора - симметрическая, то все ее собственные числа являются вещественными числами, а собственные векторы, соответствующие любым двум собственным числам ортогональны.

Если в качестве базиса можно выбрать собственные векторы, то переход к этому базису приведет матрицу линейного преобразования к диагональному виду:

,

где Р - матрица перехода к новому базису, столбцами которой являются собственные векторы, а i - их собственные числа.

Пример. Пусть линейный оператор задан матрицей .

Тогда характеристическое уравнение этой матрицы имеет вид: или или .

Корни этого уравнения и являются собственными числами.

Теперь найдем собственные векторы для каждого собственного числа.

Пусть , а собственный вектор для него ,

тогда или

Определитель этой однородной системы отличен от нуля, следовательно она имеет бесчисленное множество решений, например: x1=-u; x2=3u, где u - параметр. Следовательно собственному числу соответствует бесчисленное множество собственных векторов вида . Аналогичные вычисления приводят к определению собственных векторов для из системы

Получаем: x1=3v, x2=v, где v - параметр. Таким образом установили, что собственному числу соответствует бесчисленное множество собственных векторов вида .

Уравнение имеет единственное (нулевое) решение, следовательно векторы X1 и X2 линейно независимы.

Скалярное произведение векторов , следовательно X1 и X2 образуют ортогональный базис пространства R2.

Пусть собственные векторы X1 и X2 образуют теперь новый базис, тогда матрица перехода к новому базису будет иметь вид: . Обратная ей матрица и в новом базисе матрица будет иметь вид: .