Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекционный курс.doc
Скачиваний:
48
Добавлен:
04.05.2019
Размер:
4.56 Mб
Скачать

3. Матричные способы задания графов. Упорядочение элементов орграфа

При большом числе элементов рисунок графа теряет наглядность. В таком случае граф целесообразно задать матричным способом. Этот способ также удобен и для решения задачи на компьютере.

Определение 12.3. Матрицей инцидентности орграфа без петель с n вершинами и m дугами называется матрица, любой элемент которой определяется по следующей формуле:

Для неориентированного графа вместо «–1» ставится «1».

Пример. Для заданного ориентированного графа (рис. 12.10) построить матрицу инцидентности:

Рис. 12.10

Матрица инцидентности орграфа:

.

Определение 12.4. Матрица смежности вершин орграфа – квадратная матрица n-го порядка (n – число вершин). Строки и столбцы матрицы соответствуют вершинам графа. Элементы Sij матрицы равны числу дуг, направленных из i-й вершины в j-ю.

В случае неориентированного графа ему вместе с ребром (xi,xj) принадлежит и ребро (xj,xi), поэтому матрица будет симметрической.

Пример. Для заданного ориентированного графа (рис. 12.11) построить матрицу смежности вершин:

Рис 12.11

Матрица смежности вершин орграфа:

.

Определение 12.5. Матрица смежности дуг орграфа – квадратная матрица m-го порядка (m – число дуг). Строки и столбцы матрицы соответствуют дугам графа. Элементы qij равны 1, если дуга ui непосредственно предшествует дуге uj, и нулю в остальных случаях.

Для неориентированного графа матрица смежности дуг симметрическая с элементами равными 1, если ребра имеют общую вершину, и 0 в остальных случаях.

Пример. Для заданного ориентированного графа (рис. 12.12) построить матрицу смежности дуг:

Рис.12.12

Матрица смежности дуг орграфа:

.

Расчеты в задачах, связанных с графами, заметно упрощаются, если их элементы упорядочены.

Определение 12.6. Вершина xi предшествует вершине xj, если существует путь из xi в xj, тогда xi называется предшествующей вершине xj, а xj – последующей за xi.

Под упорядочением вершин связного орграфа без контуров понимают такое разбиение его вершин на группы, при котором:

1) вершины первой группы не имеют предшествующих, а вершины последней – последующих;

2) вершины любой другой группы не имеют предшествующих в следующей группе;

3) вершины одной и той же группы дугами не соединяются.

В результате упорядочения элементов получают граф, изоморфный данному.

Графический способ упорядочения вершин – алгоритм Фалкерсона:

1) Находят вершины графа, в которые не входит ни одна дуга. Они образуют первую группу.

2) Вершины и исходящие из них дуги исключают из дальнейшего рассмотрения (то есть вычеркивают).

3) Устанавливается следующая группа вершин, в которую не входит ни одна дуга. Этот шаг повторяют до тех пор, пока все вершины не будут упорядочены.

Пример. Упорядочить вершины орграфа (рис. 12.13):

Рис. 12.13

Упорядочим вершины орграфа по алгоритму Фалкерсона (рис. 12.14):

Рис. 12.14

4. Потоки на сетях. Постановка задачи о максимальном потоке

Определение 12.7. Сеть – это взвешенный конечный орграф без циклов и петель, ориентированный в одном общем направлении от вершины I, являющейся входом (истоком) графа, к вершине S, являющейся выходом (стоком) графа.

Для наглядности будем представлять, что по дугам из истока I в сток S направляется некоторое вещество (груз, ресурс, информация и т.п.)

Определение 12.8. Максимальное количество rij вещества, которое может пропустить за единицу времени дуга, идущая из вершины xi в xj называется его пропускной способностью. В общем случае rijrji .

Определение 12.9. Количество xij вещества, проходящего через дугу из вершины xi в xj в единицу времени, называется потоком по дуге.

Предполагается, что если из вершины xi в xj направляется поток величиной xij , то величина потока из xj в xi равна –xij , то есть xji = –xij. (12.1)

Принимается также, что xii=0. (12.2)

Определение 12.10. Совокупность X={xij} потоков по всем дугам сети называется потоком по сети или просто потоком.

Поток по любой дуге не превышает его пропускную способность:

xijrij . (12.3)

Если xij<rij , то дугу между вершинами xi и xj называют ненасыщенной.

Общее количество вещества, вытекающего из истока I, совпадает с общим количеством вещества, поступающего в сток S, то есть мощность потока (12.4),

где j – конечные вершины дуг, исходящих из I; i – начальные вершины дуг, входящих в S.

Задача о максимальном потоке формулируется следующим образом: найти совокупность X*={x*ij} потоков x*ij по всем дугам сети, которая удовлетворяет условиям (12.1) – (12.3) и максимизирует линейную функцию (12.4).

К задаче о максимальном потоке сводятся задачи: доставка груза; отыскание минимальной по стоимости плана выполнения комплекса работ при заданной его продолжительности; задачи, связанные с наиболее экономным строительством энергетических сетей и т.д.