Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Схемотехника ЭКЗАМЕН.docx
Скачиваний:
9
Добавлен:
28.04.2019
Размер:
1.34 Mб
Скачать

2. Определение булевой функции. Полные наборы булевых функций.

Бу́лева фу́нкция (или логи́ческая функция, или функция а́лгебры ло́гики) от n переменных — в дискретной математике отображение Bn → B, где B = {0,1} — булево множество. Элементы булева множества 1 и 0 обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определенного смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу. Элементы декартова произведения Bn называют булевыми векторами. Множество всех булевых функций от любого числа переменных часто обозначается P2, а от n переменных — P2(n). Булевы функции названы так по фамилии математика Джорджа Буля.

Повні набори булевих функцій.

Функціонально повні системи булевих функцій

Визначення. Система булевих функцій V називається функціонально повною, якщо для будь-якого булевого виразу знайдеться булевий вираз, який дорівнює даному, і містить лише функції з V. Іншими словами, система булевих функцій називається функціонально повною, якщо будь-яку булеву функцію можна виразити за допомогою функцій, які входять до складу цієї системи. Відомо досить багато функціонально повних систем булевих функцій. Фундаментальна теорема Поста, яка вивчається в курсі дискретної математики, встановлює необхідні і достатні умови функціональної повноти.

Найбільш відомою і вживаною функціонально повною системою є система, що складається з трьох функцій: кон'юнкції, диз'юнкції та заперечення. Особливе місце цього набору пов'язано з тим, що існує простий стандартний алгоритм вираження будь-якої булевої функції за допомогою цих трьох функцій; алгоритм полягає у побудові на основі таблиці істинності досконалої диз'юнктивної нормальної форми.

Можна навести інші приклади функціонально повних систем, такі як:

* кон'юнкція та заперечення;

* диз'юнкція та заперечення;

* тотожний нуль, тотожна одиниця, кон'юнкція, додавання за модулем 2;

* імплікація та тотожний нуль.

Існують функціонально повні набори, кожний з яких містить єдину функцію. Такими функціями є штрих Шефера та стрілка Пірса.

Вираження довільного булевого виразу через кон'юнкцію, диз'юнкцію та заперечення

Cистема булевих функцій, яка містить кон'юнкцію, диз'юнкцію та заперечення, є функціонально повною, і існує загальновживаний (хоч і не завжди оптимальний з точки зору часу виконання) алгоритм представлення будь-якого булевого виразу через ці функції. Алгоритм складається з двох частин:

* побудова таблиці істинності для заданого виразу;

* побудова за таблицею істинності досконалої диз'юнктивної нормальної форми.

Якщо функція уже задана таблицею істинності, перший етап автоматично відпадає, і залишається тільки другий.

Визначення.

Елементарною кон'юнкцією називається кон'юнкція булевих змінних, кожна з яких може стояти під знаком заперечення.

Булевий вираз записаний у диз'юнктивній нормальній формі, якщо він являє собою диз'юнкцію елементарних кон'юнкцій.

Диз'юнктивна нормальна форма від n змінних називається досконалою, якщо кожна елементарна кон'юнкція містить всі змінні, можливо з запереченням.

Зазначимо, що крім диз'юнктивних нормальних форм, широко застосовуються нормальні форми іншого типу - кон'юнктивні.

Означення. Множина функцій F називається функціонально повною, якщо F =P2.

Отже, множини { , , } і { , , 1} є функціонально повними.

Природним є питання про те, які властивості повинні мати функціонально повні множини функцій.

Видатний математик Еміль Пост сформулював і обгрунтував критерій повноти множини функцій у загальному випадку алгебри функцій з операцією суперпозиції. У цьому критерії, тобто необхідній і достатній умові, використовується поняття передповного класу. Розглянемо його.

Нехай F позначає множину всіх можливих функцій деякої алгебри функцій A з операцією суперпозиції.

Означення. Множина функцій S називається передповним класом алгебри A, якщо S F і за будь-якої функції f з множини F\S набір S {f} є повним: S {f} =F.

Критерій Поста. Нехай S1, S2, … - усі передповні класи алгебри функцій F. Множина функцій M є повною тоді й тільки тоді, коли для кожного передповного класу Si множина M містить f M\Si.

Приймемо це твердження без доведення.