Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GGD_IDO.doc
Скачиваний:
51
Добавлен:
21.04.2019
Размер:
8.37 Mб
Скачать

2. Основы гидростатики

2.1. Основные сведения

Гидростатика является разделом прикладной механики жидкости и газа, в котором изучаются законы равновесия жидкости.

Вследствие текучести жидкости в ней не могут действовать сосре­доточенные силы, а возможно лишь действие сил, непрерывно рас­пределенных по ее объему (массе) или по поверхности. Поэтому внешние силы, действующие на рассматриваемый объем жидкости, разделяют на массовые (объемные) и поверхностные.

Массовые силы пропорциональны массе жидкого тела или (для однородных жидкостей) его объему.

К ним относятся сила тяжести и силы инерции переносного движения, действующие на жидкость при относительном ее покое в ускоренно движущихся сосудах или при относительном движении жидкости в руслах.

К числу массовых сил относятся силы, вводимые при со­став­ле­нии уравнений движения жидкости по принципу Д’Аламбера-Ло­гран­жа1.

Поверхностные силы проявляются на граничных поверхностях рассматриваемого жидкого тела.

Поверхностную силу, действующую нормально к какой-либо площадке, называют силой давления.

Поверхностная сила, действующая по касательной к площадке, является силой сопротивления.

Сила сопротивления проявляется только при движении жид­кости, а сила давления – как при движении, так и при покое жид­кости.

2.2. Гидростатическое давление

Рассмотрим произвольный объем жидкости W (рис. 2.1), на­ходя­щейся в равновесии под действием внешних сил P и ограни­чен­ной поверхностью S.

Рис. 2.1.

Проведем секущую плоскость а-а, делящую объем W на две час­ти 1 и 2. Отбросим часть 1 и заменим распределенными по площади  силами рi, одна из которых р приходится на долю площади .

Напряжение сжатия с, возникающее при этом, определяется как частное от деления силы р на площадь :

. (2.1)

Напряжение с принято называть средним гидростатическим дав­лением; предел отношения при   0 называется гидро­ста­ти­ческим давлением в точке:

. (2.2)

Размерность давления [р] = [] = .

Единица измерения давления Па. Это давление, вызываемое силой в 1Н, равномерно распределено по поверхности площадью в 1м2 (1 Па = 1 ).

Так как эта единица очень мала, то на практике давление из­ме­ряют в килопаскалях (1 кПа = 103 Па) или мегапаскалях (1 МПа = 106 Па).

2.3. Основная теорема гидростатики

Гидростатическое давление в данной точке не зависит от на­прав­ления, т.е. остается одинаковым по всем направлениям.

Докажем, что рх = ру = рz = рn, где рх, рy, рz, рn представляют собой гидростатическое давление соответственно в направлении ко­ор­динатных осей ox, oy, oz и в некотором произвольном на­прав­ле­нии N-N (рис. 2.2).

Рис. 2.2

Выделим внутри массы жидкости, находящейся в равновесии, малый объем в форме тетраэдра с ребрами dx, dy, dz, со­ответ­ст­-венно параллельными координатным осям, и с массой

dm = ,

где  – плотность жидкости.

Представим, что жидкость внутри тетраэдра – в виде твердого тела. Это не изменяет условий равновесия.

Воспользуемся известными уравнениями статики твердого тела, а именно уравнениями проекций сил и уравнениями моментов:

(2.3)

Учитывая, что при стягивании тетраэдра в точку, уравнения мо­мен­тов такой системы удовлетворяются тождественно, а действую­щие на не­го силы сводятся к системе сил, проходящих через одну и ту же точку.

Таким образом, остается только три проекции сил:

(2.4)

К действующим силам относятся поверхностные и массовые (объемные) силы.

К поверхностным силам относятся силы давления жидкости, окружающей элементарный тетраэдр.

Таких сил будет четыре (по числу граней).

На грань АВС действует сила

, (2.5)

где рх – среднее гидростатическое давление для треугольника АВС с площадью .

Сила dPx параллельна оси ox, направлена в противоположную сто­рону оси и, следовательно, войдет в уравнение со знаком «плюс».

Силы dPy и dPz, действующие на грани ABD и ACD, соот­вет­ст­вен­­но параллельны осям oy и oz и их проекции на ось ox равны ну­лю.

Четвертая сила dPn – сила давления на грань ВСD равна:

, (2.6)

где рn – среднее гидростатическое давление для грани BCD;

d – площадь этой грани.

Проекция этой силы на ось ox:

. (2.7)

Э та сила направлена в отрицательную сторону оси ox.

Произведение dcos(N,ox) представляет собой проекцию пло­ща­ди треугольника BCD на плоскость уoz и равно:

. (2.8)

Тогда проекция силы dPn на ось ox численно равна:

. (2.9)

А налогично можно записать проекции силы dPn на оси oy и oz:

(2.10)

Массовые силы, действующие на тетраэдр, приводятся к рав­нодействующей dR, образующей с координатными осями углы , ,  и равной:

, (2.11)

где dm –масса тетраэдра, равная:

,

где  –плотность жидкости;

dxdydz – объем тетраэдра;

j – ускорение объемной силы (в частном случае ускорение свободного падения).

Обозначим проекции ускорения j по координатным осям x, y, z, т.е. примем, что

Тогда проекции объемной силы dR равны:

(2.12)

Запишем сумму проекций всех сил на ось ox с учетом уравнений (2.12):

. (2.13)

Или после сокращения на dydz:

.

Пренебрегая dxX как бесконечно малым относительно px и pn, получаем px pn = 0 или px = pn.

Аналогично py = pn и pz = pn.

Следовательно,

px = py = pz = pn. (2.14)

Что и надо было доказать.

Таким образом, гидростатическое давление в точке по любому на­правлению оказывается одинаковым, т.е. не зависит от направ­ле­ния действия.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]