Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цвет в компьютерной графике.docx
Скачиваний:
6
Добавлен:
21.12.2018
Размер:
1.05 Mб
Скачать

Закраска методом Фонга

Фонг предложил вместо интерполяции интенсивностей произвести интерполяцию вектора нормали к поверхности на сканирующей строке. Этот метод требует больших вычислительных затрат, поскольку формулы интерполяции (3.6)–(3.7) применяются к трем компонентам вектора нормали, но зато дает лучшую аппроксимацию кривизны поверхности. Поэтому зеркальные свойства поверхности воспроизводятся гораздо лучше.

Нормали к поверхности в вершинах многогранника вычисляются так же, как и в методе Гуро. А затем выполняется билинейная интерполяция в сочетании с построчным сканированием. После построения вектора нормали в очередной точке вычисляется интенсивность.

увеличить изображение Рис. 9.6.  Три способа закрашивания

Этот метод позволяет устранить ряд недостатков метода Гуро, но не все. В частности, эффект полос Маха в отдельных случаях в методе Фонга бывает даже сильнее, хотя в подавляющем большинстве случаев аппроксимация Фонга дает лучшие результаты. На рис. 9.6 приведены результаты закрашивания поверхности вращения, аппроксимированной многогранником, который составлен из треугольных граней: a) - плоское закрашивание, b) - закрашивание по методу Гуро, c) - закрашивание по методу Фонга. Первый из вариантов дает изображение ребристой поверхности с очень контрастными переходами от одной грани к другой. Вторая модель дает более гладкое изображение, но в районе бликов отчетливо наблюдаются линии ребер, хотя и сглаженные. Третий вариант получился наиболее гладким, зеркальные блики имеют достаточно реалистичную форму.

Более сложные модели освещения

Когда мы рассматривали алгоритмы удаления невидимых линий, предполагалось, что сцена включает только непрозрачные объекты. В простой модели освещения тоже речь шла о непрозрачных поверхностях. Теперь можно усложнить задачу, включив в модель не только отражение света, но и преломление.

Рис. 9.7.  Преломленный и отраженный лучи

Рис. 9.8.  Преломление в призме

При переходе луча из одной среды в другую его направление изменяется согласно закону Синеллиуса: преломленный луч лежит в плоскости, образуемой нормалью к плоскости и падающим лучом, а углы, образуемые лучами с нормалью, связаны формулой

где - показатели преломления двух сред (рис. 9.7). Пропускание света также может быть диффузным (если часть энергии света рассеивается средой) или направленным. В первом случае мы имеем дело с полупрозрачными телами, которые изменяют окраску видимых сквозь них объектов. Во втором случае тело является прозрачным, и оно визуально обнаруживается только благодаря искажениям объектов за счет преломления лучей.

При наличии в пространственной сцене прозрачных или полупрозрачных объектов надо учитывать, что изображение других объектов будет отличаться от обычной проекции на картинную плоскость (рис. 9.8). Эти эффекты хорошо знакомы всем, кто сталкивался с различными линзами. Для построения изображения таких сцен целесообразно использовать алгоритмы с обратной трассировкой лучей.

Для изображения полупрозрачных поверхностей без учета преломления можно ввести так называемый коэффициент прозрачности , который позволяет смешивать интенсивности для видимой поверхности и той, что расположена за ней:

При поверхность непрозрачна, при - полностью прозрачна. Для полупрозрачных тел необходимо учитывать их объемную структуру.

Методы построения изображений сцен с прозрачными и полупрозрачными объектами будут более подробно рассмотрены в следующей лекции.