Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Схемотехника зачет! .docx
Скачиваний:
4
Добавлен:
20.12.2018
Размер:
316.32 Кб
Скачать

Классификация сигналов

По физической природе носителя информации:

  • электрические, электромагнитные, оптические, акустические и др.;

По способу задания сигнала:

  • регулярные (детерминированные), заданные аналитической функцией;

  • нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей;

В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы.:

  • непрерывные (аналоговые), описываемые непрерывной функцией;

  • дискретные, описываемые функцией отсчетов, взятых в определенные моменты времени;

  • квантованные по уровню;

  • дискретные сигналы, квантованные по уровню (цифровые)

  • Параметры сигналов

  • Мощность сигнала P(t) = s2(t)

  • Удельная энергия сигнала 

  • Длительность сигнала T определяет интервал времени, в течение которого сигнал существует (отличен от нуля);

  • Динамический диапазон есть отношение наибольшей мгновенной мощности сигнала к наименьшей:D = 10lgPmax / Pmin

  • Ширина спектра сигнала F — полоса частот, в пределах которой сосредоточена основная энергия сигнала;

  • База сигнала есть произведение длительности сигнала на ширину его спектра B = TF. Необходимо отметить, что между шириной спектра и длительностью сигнала существует обратно пропорциональная зависимость: чем короче спектр, тем больше длительность сигнала. Таким образом, величина базы остается практически неизменной;

  • Отношение сигнал/шум равно отношению мощности полезного сигнала к мощности шума;

  • Объем передаваемой информации характеризует пропускную способность канала связи, необходимую для передачи сигнала. Он определяется как произведение ширины спектра сигнала на его длительность и динамический диапазонV = FTD

3) Диод: принцип работы, характеристики, схемы включения. Участки вах диода и их зависимости. Схема выпрямителя: описание работы и назначение схемы.

Полупроводниковый прибор с одним р-n-переходом, имеющий два омических вывода, называют полупроводниковым диодом.

Нормальная работа диода в качестве элемента односторонней проводимостью возможна лишь в режимах, когда обратное напряжение не превышает пробивного значения Uо6р mах .

Значение допустимого обратного напряжения устанавливается с учетом исключения возможности электрического пробоя и составляет (0,5 - 0,8) Uпроб .

Емкости диода. Принято говорить об общей емкости диода Сд , измеренной между выводами диода при заданном напряжении смещения и частоте. Общая емкость диода равна сумме барьерной емкости С6 , диффузионной емкости Сдиф и емкости корпуса прибора Ск .

Барьерная (зарядная) емкость обусловлена нескомпенсированным объемным зарядом ионов примесей, сосредоточенными по обе стороны от границы р-n-перехода.

 Модельным аналогом барьерной емкости может служить емкость плоского конденсатора, обкладками которого являются р- и n-области, а диэлектриком служит р-n-переход, практически не имеющий подвижных зарядов. Значение барьерной емкости колеблется от десятков до сотен пикофарад; изменение этой емкости при изменении напряжения может достигать десятикратной величины.

Диффузионная емкость. Изменение величины объемного заряда неравновесных электронов и дырок, вызванное изменением прямого тока, можно рассматривать как следствие наличия так называемой диффузионной емкости, которая включена параллельно барьерной емкости.

 Значения диффузионной емкости могут иметь порядок  от сотен до тысяч пикофарад. Поэтому при прямом напряжении емкость р-n-перехода определяется преимущественно диффузионной емкостью, а при обратном напряжении - барьерной емкостью.

Однополупериодный выпрямитель. Простейшим является однополупериодный выпрямитель. Напряжение и ток нагрузки имеют форму, показанную на рис. Выходное напряжение меньше входного на величину падения напряжения на открытом диоде.

Среднее значение выпрямленного напряжения:

         

Здесь  – действующее значение входного напряжения. Максимальное обратное напряжение на диоде:  Максимальный ток диода:

Важным параметром выпрямителя является коэффициент пульсаций выпрямленного напряжения, равный отношению максимального и среднего напряжений. Для однополупериодного выпрямителя коэффициент пульсаций

Выпрямленные напряжение и ток в схеме имеют большой уровень пульсаций. Поэтому на практике такую схему применяют в маломощных устройствах в тех случаях, когда не требуется высокая степень сглаживания выпрямленного напряжения.

Двухполупериодные выпрямители. Меньший уровень пульсаций выпрямленного напряжения можно получить в двухполупериодных выпрямителях. На рис. 1.1.4 показана схема выпрямителя с выводом от средней точки вторичной обмотки трансформатора.

  Рис. 1.1.4

Во вторичной обмотке трансформатора индуцируются напряжения  и , имеющие противоположную полярность. Диоды проводят ток поочередно, каждый в течение полупериода. В положительный полупериод открыт диод VD1, а в отрицательный – диод VD2. Ток в нагрузке имеет одинаковое направление в оба полупериода, поэтому напряжение на нагрузке имеет форму, показанную на рис. 1.1.5. Выходное напряжение меньше входного на величину падения напряжения на диоде.

  Рис. 1.1.5

В двухполупериодном выпрямителе постоянная составляющая тока и напряжения  увеличивается вдвое по сравнению с однополупериодной схемой:

;     .

Из последней формулы определим действующее значение напряжения вторичной обмотки трансформатора:

.

Коэффициент пульсаций в данном случае значительно меньше, чем у однополупериодного выпрямителя:

.

Так как ток во вторичной обмотке трансформатора двухполупериодного выпрямителя  синусоидальный, а  не пульсирующий, он не содержит постоянной составляющей. Тепловые потери при этом  уменьшаются, что позволяет уменьшить габариты трансформатора.  Существенным недостатком схемы на рис. 1.1.4 является то, что к запертому диоду приложено обратное напряжение, равное удвоенной амплитуде напряжения одного плеча вторичной обмотки трансформатора:

Поэтому необходимо выбирать диоды с большим обратным напряжением. Более рационально используются диоды в мостовом выпрямителе (рис. 1.6).

Эта схема имеет такие же значения среднего напряжения и коэффициента  пульсаций, что и схема выпрямителя с выводом от средней точки трансформатора. Ее преимущество в том, что обратное напряжения на диодах в два раза меньше. Кроме того, вторичная обмотка трансформатора содержит вдвое меньше витков, чем вторичная обмотка в схеме на рис.  1.1.4.

4)    Основные характеристики, параметры и зависимости биполярного транзистора. Принцип его работы, виды биполярных транзисторов.

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n— электронный тип примесной проводимости, p — дырочный). Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. Нормальный активный режим

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт)UЭБ>0;UКБ<0;

Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты).

Режим отсечки

В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты).

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмитерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя диод, включенный последовательно с резистором. Подобные схемы каскадов отличаются малым количеством комплектующих схему элементов, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, неразборчивостью к параметрам транзисторов.

Основные параметры:

  • Коэффициент передачи по току

  • Входное сопротивление

  • Выходная проводимость

  • Обратный ток коллектор-эмиттер

  • Время включения

Предельная частота коэффициента передачи тока базы

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.