Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_na_voprosy_po_ekonometrike.docx
Скачиваний:
17
Добавлен:
20.12.2018
Размер:
686.38 Кб
Скачать

64.Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.

Одним из основных способов корректировки гетероскедастичности является использование метода взвешенных наименьших квадратов. Он применяется в том случае, когда известны диагональные элементы автоковариационной матрицы вектора возмущений . В этом случае уравнения наблюдений можно преобразовать следующим образом. Поделим каждый член на СКО возмущения: , где t=1….n. В результате преобразования спецификация принимает вид спецификации классической регрессионной модели: . Определим количественные характеристики случайного возмущения :

математическое ожидание: E{}=E{}==0

дисперсия случайного члена: Var {}=Var{}===1, таким образом ~N(0,1) и при помощи данного преобразования случайное возмущение приобрело свойство гомоскедастичности.

В случае, если значения неизвестны, используется доступный обобщенный метод наименьших квадратов. В этом методе выполняется оценка неизвестных дисперсий, но при условии, что на структуру автоковариационной матрицы накладываются дополнительные ограничения (предпосылки). Наиболее часто используется следующая предпосылка: СКО возмущения пропорционально одному из регрессоров.

65.Статистические свойства оценок параметров парной регрессионной модели.

Теорема Гаусса-Маркова. Пусть матрица Х имеет полный ранг. При выполнении условий Гаусса-Маркова МНК-оценки параметров относятся к классу линейных по Y, несмещенных оценок с минимальной дисперсией. Покажем линейность оценок следующим выражением: Докажем несмещенность полученных оценок. Введем обозначение: , тогда можно показать, что справедливы следующие соотношения: , , , . Свойство несмещенности оценок параметра проверяется соответственно: , , E()=b, E=a. Оценка является состоятельной если: , т.е с увеличением объема выборки оценки более плотно концентрируются около истинного значения. Оценка становится более надежной в вероятностном смысле, и дисперсия оценки стремится к нулю. Для доказательства состоятельности оценок параметров парной регрессии получим выражения для элементов автоковариационной матрицы вектора оценок параметров . В матричной форме =AY, поэтому =Cov{AY,AY}=. Определим элементы автоковариационной матрицы случайного вектора Y: , где -единичная матрица с размером nxn. Таким образом ==( Так как Q=, получим выражения элементов ковариационной матрицы вектора через выборочные данные: , таким образом имеем: , . Как следует из этих выражений, с увеличением объема выборки n дисперсии несмещенных оценок параметров стремятся к нулю, то есть МНК-оценки параметров парной регрессии являются состоятельными.

В качестве эффективности оценок чаще всего используется критерий вида: Е{}=. Несмещенная оценка является эффективной, если она имеет минимальную дисперсию по сравнению с любыми другими оценками этого параметра в классе выбранных процедур(т.е. является менее случайной). Доказательство эффективности МНК-оценок выполняется путем сравнения их дисперсий с дисперсиями линейных несмещенных оценок . Пусть -вектор несмещенных линейных оценок параметров , определяемых выражением вида , где С- произвольная(2хn)- матрица. Тогда в силу несмещенности оценки и равенства AX=, можно записать: , откуда следует, что CX=0. Определим автоковариационную матрицу вектора оценок : , так как Cov{Y,Y}= I и С=0, A=. Диагональные элементы автоковариационной матрицы-дисперсии оценок параметров. Диагональные элементы неотрицательны, поэтому Var( Var(, т.е МНК-оценка является эффективной, имея минимальную дисперсию по сравнению с любыми несмещенными оценками неизвестного параметра в классе линейных процедур

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]