Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика,ответы на вопросыЭТО РАСПЕЧАТАЙ.doc
Скачиваний:
45
Добавлен:
16.12.2018
Размер:
2.03 Mб
Скачать

60 Взаимодействие рентгеновского излучения с веществом.

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

Рассеяние длинноволнового рентгеновского излучения происходят в основном без изменений длины волны, его называют

а) когерентным. Оно возникает, если энергия фотона меньше энергии ионизации: hНЮ<Au. Оно не вызывает биологического действия этот вид взаимодействия имеет значение для рентгеноструктурного анализа

б) некогерентное рассеяние (эффект Колектона) длина волны рассеянного рентгеновского излучения больше, чем падающая: hНЮ>Au. При взаимодействии с атомами энергия (hНЮ) фотона расходуется на образование нового рассеянного фотона рентгеновского излучения с энергией (hНЮ’) на отрыв электрона от атома (энергия ионизации Au) и сообщение электрону кинетической энергии

Ек. hНЮ=hНЮ'+Au+Ек

Атомы или молекулы при этом становятся ионами

в) фотоэффект - рентгеновское излучение поглощается атомом - вылетает электрон, а атом ионизируется. Эти основные процессы взаимодействия рентгеновского излучения с веществом первичные, но есть и вторичные, третичные и т.д. явления. Например, ионизированные атомы могут излучать характеристический спектр, возбужденные атомы могут стать источником света и т.п. Может происходить несколько десятков процессов, прежде чем энергия рентгеновского фотона перейдет в энергию молекулярно-теплового движения. В итоге произойдут изменения молекулярного состава вещества.

61 Физические основы рентгенографии

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодинамика).

Для диагностики используют фотоны с энергией порядка 60-120кэВ. При этой энергии шоковый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона, в чем проявляется большая проникающая способность жесткого излучения, и пропорционально третий степени атомного номера вещества-поглотителя , k- коэф. пропорциональности.

Существенное различие поглощения рентгеновского излучения разными тканями позволяет в живой проекции видеть изображение внутренних органов тела человека.

Рентгенодиагностику используют в двух вариантах:

  1. рентгеноскопия - изображение рассматривают на рентгенолюминицирующем экранах;

  2. рентгенография изображение фиксируется на фотопленке.

Яркость изображения на фотопленке и время экспозиции зависят от интенсивности рентгеновского излучения.

Интенсивность не может быть большой, чтобы не вызвать нежелательных биологических последствий. Есть технические приспособления, излучающие изображения при малых интенсивностях рентгеновского излучения.

С лечебной целью рентгеновское излучение применяют главным образом для уничтожения злокачественных образований (рентгенотерапия)

Методы рентгеновского излучения:

  1. Флюрография

  2. Ренгтгенография

  3. Рентгеноскопия

  4. Рентгеновская томография