Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зачетные ответы по электронной технике.docx
Скачиваний:
49
Добавлен:
08.12.2018
Размер:
277.58 Кб
Скачать

8.Полупроводниковые транзисторы. Классификация. Биполярные транзисторы. Основные параметры

Все полупроводниковые транзисторы делятся на две группы: биполярные и униполярные (полевые) транзисторы. Основное отличие заключается в том, что биполярные транзисторы управляются током, а полевые – напряжением (электрическим полем).

Биполярным транзистором называется полупроводниковый прибор с двумя взаимодействующими p-n-переходами. Биполярные транзисторы различаются по структуре. Существуют биполярные транзисторы типа “p-n-p” и “n-p-n”. Транзисторы имеют три вывода: эмиттер (Э), базу (Б) и кол­лектор (К). В биполярных транзисторах типа “n-p-n” подключается к коллектору, а в транзисторах “p-n-p” – к эмиттеру.

Транзисторы также подразделяются по мощности, частоте и дру­гим признакам.

Принцип действия биполярного транзистора основан на исполь­зовании физических процессов, происходящих при переносе основных носителей электрических зарядов из эмиттерной области в коллектор­ную через базу.

Важнейшими параметрами, характеризующими качество транзистора, являются дифференциальный коэффициент передачи тока из эмиттера в коллектор - a и дифференциальный коэффициент передачи тока из базы в коллектор - b.

Основными параметрами, характеризующими транзистор как активный нелинейный четырехполюсник являются:

  • коэффициент усиления по току ,

  • коэффициент усиления по напряжению ,

  • коэффициент усиления по мощности ,

  • входное сопротивление ,

  • выходное сопротивление .

Обычно транзисторы включаются в электрическую схему таким образом, чтобы один из его электродов был входным, второй выходным, а третий общий для входа и выхода

Биполярные транзисторы классифицируются по двум парамет­рам: по мощности и по частотным свойствам. По мощности они подраз­деляются на маломощные, средней мощности и мощные; по частотным свойствам - на низкочастотные, средней частоты, вы­сокой частоты и сверхвысокой частоты.

Маркировка биполярных транзисторов предусматривает шесть символов.

Классификация транзисторов

Мощность

Частота

НЧ

СЧ

ВЧ

Малой мощности

КТ1…

КТ2…

КТ3…

Средней мощности

КТ4…

КТ5…

КТ6…

Мощные

КТ7…

КТ8…

КТ9…

Например: КТ315А – транзистор, биполярный, высокочастотный, малой мощности, широкого применения, группа А.

2Т935А – транзистор, биполярный, высокочастотный, специального применения, большой мощности, группа А.

9. Схемы включения транзистора с оэ, с ок, с об. Сравнительная характеристика

Существует три основные схемы включения транзисторов. При этом один из электродов транзистора является общей точкой входа и выхода каскада. Надо помнить, что под входом (выходом) понимают точки, между которыми действует входное (выходное) переменное напряжение. Основные схемы включения называются схемами с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК).

Схема с общим эмиттером (ОЭ). Такая схема изображена на рисунке 1. Во всех книжках написано, что эта схема является наиболее распространненой, т. к. дает наибольшее усиление по мощности.

Рис. 1 - Схема включения транзистора с общим эмиттером

Услительные свойства транзистора характеризует один из главных его параметров - статический коэффициент передачи тока базы или статический коэффициент усиления по току ?. Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (Rк = 0). Численно он равен:

при Uк-э = const

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент ki всегда меньше, чем ?, т. к. при включении нагрузки ток коллектора уменьшается.

Коэффициент усиления каскада по напряжению ku равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является перемнное напряжение uб-э, а выходным - перемнное напряжение на резисторе, или что то же самое, напряжение коллектор-эмиттер. Напряжение база-эмиттер не превышает десятых долей вольта, а выходное достигает едениц и десятков вольт (при достаточном сопротивлении нагрузки и напряжении источника E2). Отсюда вытекает, что коэффициент усиления каскада по мощности равен сотням, тысячам, а иногда десяткам тысяч.

Важной характеристикой является входное сопротивление Rвх, которое определяется по закону Ома:

и составляет обычно от сотен Ом до едениц килоом. Входное сопротивление транзистора при включении по схеме ОЭ, как видно, получается сравнительно небольшим, что является существенным недостатком. Важно также отметить, что каскад по схеме ОЭ переворачивает фазу напряжения на 180°

К достоинствам схемы ОЭ можно отнести удобство питания ее от одного источника, поскольку на базу и коллектор подаются питающие напряжения одного знака. К недостаткам относят худшие частотные и температурные свойства (например,в сравнении со схемой ОБ). С повышением частоты усиление в схеме ОЭ снижается. К тому же, каскад по схеме ОЭ при усилении вносит значительные искажения.

Схема с общей базой (ОБ). Схема ОБ изображена на рисунке 2.

Рис. 2 - Схема включения транзистора с общей базой

Такая схема включения не дает значительного усиления, но обладает хорошими частотными и температурными свойствами. Применяется она не так часто, как схема ОЭ.

Коэффициент усиления по току схемы ОБ всегда немного меньше еденицы:

т. к. ток коллектора всегда лишь немного меньше тока эмиттера.

Статический коэффициент передачи тока для схемы ОБ обозначается ? и определяется:

при uк-б = const

Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор. Коэффициент усиления по напряжению получается таким же, как и в схеме ОЭ. Входное сопротивление схемы ОБ в десятки раз ниже, чем в схеме ОЭ.

Для схемы ОБ фазовый сдвиг между входным и выходным напряжением отсутствует, то есть фаза напряжения при усилении не переворачивается. Кроме того, при усилении схема ОБ вносит гораздо меньшие искажения, нежели схема ОЭ.

Схема с общим коллектором (ОК). Схема включения с общим коллектором показана на рисунке 3. Такая схема чаще называется эмиттерным повторителем.

Рис. 3 - Схема включения транзистора с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь. Коэффициент усиления по току почти такой же, как и в схеме ОЭ. Коэффициент усиления по напряжению приближается к единице, но всегда меньше ее. В итоге коэффициент усиления по мощности примерно равен ki, т. е. нескольким десяткам.

В схеме ОК фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Входное сопротивление схемы ОК довольно высокое (десятки килоом), а выходное - сравнительно небольшое. Это является немаловажным достоинством схемы.