Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
DO_ak_energy.doc
Скачиваний:
34
Добавлен:
06.12.2018
Размер:
4.1 Mб
Скачать

Топливо

Рис. 2.5. Схема МГД-генератора.

1 - камера сгорания; 2 - МГД-канал; 3 - электроды; 4 - магнитная система

Следовательно, движение плазмы представляет собой электрический ток. Для разделения положительных и отрицательных ионов плазма должна пересекать магнитное поле, в котором положительные ионы отклоняются в одну сторону, а отрицатель- ные – в другую. Концентрация положительных и отрицательных ионов на металлических пластинах придает им положительный и отрицательный потенциал; пластины становятся источником электродвижущей силы (ЭДС). В МГД установках в качестве энергоносителя используется низкотемпературная плазма (около 2700о С), образующаяся при сгорании органического топлива – природного газа или твердого топлива.

Большой интерес уделяют непосредственному преобразованию химической энергии органического топлива в электрическую – созданию топливных элементов. Распространение получили низкотемпературные (t=150°С) топливные элементы с жидким электролитом (концентрированные растворы серной или фосфорной кислот и щелочей КОН). Топливом в элементах служит водород, окислителем – кислород из воздуха.

Ведутся работы по созданию энергетических установок, использующих энергию гравитации, вакуума, низких температур окружающего воздуха для обогревания помещений по принципу теплового насоса («холодильник наоборот», морозильное отделение которого помещено на улице).

Графики нагрузки

Производство электрической и тепловой энергии на электростанциях и их потребление различными пользователями - процессы взаимосвязанные. В силу физических закономерностей мощность потребления энергии в какой-либо момент времени должна быть равна генерируемой мощности. В этом заключается особенность энергетического производства. К сожалению, отсутствуют возможности складирования электрической и тепловой энергии. Практическое применение известных способов аккумулирования (накопления) различных видов энергии весьма затруднительно.

В то же время работа отдельных приемников электрической и тепловой энергии неравномерна и суммарное потребление энергии также неравномерно.

Потребителю требуется электроэнергии днем больше, чем ночью, в рабочий день недели больше, чем в субботу и воскресенье, зимой больше, чем летом. Режим потребления электрической или тепловой энергии потребителем: предприятием, районом, городом, страной - в течение определенного отрезка времени: суток, месяца, года - отражается с помощью графика нагрузки. Соответственно, различают суточный, месячный, годовой графики нагрузки.

График нагрузки – это зависимость потребляемой мощности от времени суток, месяца, года. Графики нагрузки существенно отличаются для воскресных и рабочих дней, для зимних и летних месяцев и т.п. Графики нагрузки отдельных потребителей и в целом энергосистемы имеют неравномерный характер.

Суточный график нагрузки района или города складывается из графиков нагрузки множества отдельных потребителей и отражает изменение во времени суммарной мощности всех потребителей района или города, имеет минимумы – провалы и максимумы – пики. Значит, в одни часы суток требуется большая суммарная мощность генераторов, а в другие часть генераторов или электростанций должна быть отключена или работать с меньшей нагрузкой. На рис 2.6 представлен примерный график потребления электрической энергии в течение зимних суток в большом городе, на котором имеются два характерных пика – утром, в 8 – 9 часов (подъем людей и начало рабочего дня) и вечером, в 18 – 19 часов (наступление темноты и возвращение с работы) - и характерный ночной провал нагрузки.

Из графиков нагрузки отдельных потребителей складывается суммарный график потребления для энергосистемы страны, так называемая национальная кривая нагрузки. Задача энергосистемы состоит в обеспечении этого графика. Количество электростанций в энергосистеме страны, их установленная мощность определяются относительно непродолжительным максимумом национальной кривой нагрузки. Это приводит к недоиспользованию оборудования, удорожанию энергосистем, росту себестоимости вырабатываемой электроэнергии.

Рис. 2.6. Примерный график электропотребления

Кардинально изменить характер потребления электрической и тепловой энергии весьма сложно. Более того, объективно существует тенденция роста неравномерности энергопотребления в силу перспективы увеличения доли коммунально-бытовой нагрузки.

Более ровная форма национальной кривой нагрузки означает более эффективное использование энергетических ресурсов в масштабах всей страны, и, следовательно, более успешную реализацию энергосберегающего потенциала.

Обеспечить график нагрузки означает организовать бесперебойную подачу электроэнергии в часы максимального потребления при дефиците мощности в энергосистеме, а в часы минимума потребления энергии не допускать разгрузки той части генерирующего оборудования, для которой это приводит к существенному сокращению сроков работы, иметь в энергосистеме оборудование, обладающее высокой маневренностью (газотурбинные установки, гидроаккумулирующие станции и т. п.), и энергоаккумулирующие установки.

Чтобы обеспечить неравномерные графики нагрузки, электроэнергетические системы должны быть достаточно маневренными, т.е. способными быстро изменять мощность электростанций.

В промышленно развитых странах большая часть электроэнергии, около 80%, вырабатывается на ТЭС, для которых наиболее желателен равномерный график нагрузки. На агрегатах этих станций невыгодно производить регулирование мощности. Обычные паровые котлы и турбины тепловых станций допускают изменение нагрузки на 10–15%. Периодические включения и отключения ТЭС не позволяют решить задачу регулирования мощности из-за большой продолжительности (часы) этих процессов. Работа крупных ТЭС в резко переменном режиме нежелательна, так как приводит к повышенному расходу топлива, износу теплосилового оборудования и снижению его надежности. Еще более нежелательны переменные режимы для АЭС. Поэтому ТЭС и АЭС работают в режиме так называемых базовых электростанций, покрывая неизменяющуюся постоянную нагрузку энергосистемы, т.е. базовую часть графика нагрузки.

Дефицит в маневренных мощностях, т.е. пиковые и полупиковые нагрузки энергосистемы покрываются газотурбинными или парогазовыми установками на ТЭС, ГАЭС, ГЭС, у которых набор полной мощности от нуля можно произвести за 1-2 минуты, что широко применяется в белорусской энергосистеме. Регулирование мощности ГЭС производится следующим образом: когда в системе – провалы нагрузки, ГЭС работают с незначительной мощностью и вода заполняет водохранилище, при этом запасается энергия; с наступлением пиков нагрузки включаются агрегаты станции и вырабатывается энергия. Накопление энергии в водохранилищах на равнинных реках приводит к затоплению обширных территорий, что является отрицательным экологическим фактором. Целесообразно строительство ГЭС на быстрых горных реках.

В Беларуси в настоящее время осуществляется программа восстановления построенных в довоенные годы малых ГЭС, которые являются экологически чистыми возобновляемыми источниками энергии и будут способствовать обеспечению маневренности Белорусской ЭС.

Решение задачи выравнивания национальной кривой нагрузки связано с разработкой и реализацией политики управления спросом на энергию, т.е. Управления энергопотреблением. Управление спросом на энергию может осуществляться как социально-экономическими, так и техническими мероприятиями и средствами.

Весьма действенным экономическим инструментом являются дифференцированные тарифы (цены) на электрическую и тепловую энергию: в периоды максимумов нагрузки тарифы выше, что стимулирует потребителей к перестройке работы с целью уменьшения потребления в часы максимума нагрузки энергосистемы.

Эффективной технической мерой выравнивания графиков нагрузок служит аккумулирование различных видов энергии: в часы провала нагрузки следует запасать электроэнергию, а в часы максимума – использовать ее. Представляет значительный интерес идея так называемого встречного регулирования режима потребления и способы ее практического осуществления. Суть ее состоит в том, чтобы стимулировать потребителя к максимальному потреблению в часы минимума энергосистемы и к минимальному потреблению в часы максимума энергосистемы.

Таким образом, можно определить 3 основных пути решения проблемы несоответствия режимов энергопроизводства и энергопотребления и, следовательно, 3 конкретных задачи энергетического менеджмента:

  1. Оптимизация структуры генерирующих мощностей, т.е. рациональный выбор числа, видов, установленной мощности электрических станций;

  2. Разработка и использование системы социально-экономических мероприятий, стимулирующих потребителя к уменьшению потребления в часы максимумов нагрузки энергосистемы;

  3. Разработка и внедрение способов и устройств аккумулирования энергии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]