Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / lekcii__tau / Лекции1часть4.doc
Скачиваний:
71
Добавлен:
22.02.2014
Размер:
1.21 Mб
Скачать

Обобщенная формулировка критерия Найквиста

Для устойчивости замкнутой системы необходимо и достаточно, чтобы годограф АФЧХ разомкнутой системы при изменении  от 0 досделал число положительных переходов действительной оси левее точки () больше числа отрицательных переходов на раз.

Считаем слева направо -, +, -, +. Сумма переходов равна нулю. Переходы справа от точки (-1,j0) не считаем. Замкнутая система будет устойчива, если m1=0 (в разомкнутой системе все корни левые).

Логарифмический критерий устойчивости (Найквиста)

Это разновидность частотного критерия Найквиста, позволяющего выяснить устойчивость системы по логарифмическим частотным характеристикам разомкнутой системы.

Для устойчивости замкнутой системы, устойчивой в разомкнутом состоянии (или нейтральной), необходимо и достаточно, чтобы критическая частота, соответствующая переходу ЛФХ через линию (-1800) была больше, чем частота среза.

Общая формулировка логарифмического критерия:

Для устойчивости замкнутой системы необходимо и достаточно, чтобы разность между числом положительных и отрицательных переходов кривой линиив областиравнялась, где- число правых корней разомкнутой системы.

О применении критериев устойчивости

Если имеется дифференциальное уравнение системы в канонической форме или операторное уравнение вида , (), то в этом случае предпочтительно использовать алгебраические критерии. Если порядок уравнения , то лучше критерий Гурвица. Кроме того критерий Гурвица можно рекомендовать, когда необходимо решить задачу нахождения границы устойчивости. Для этого приравнивают к нулю минор и находят из данного уравнения граничные условия.

Если , то лучше применять критерий Раусса.

Частотные критерии предпочтительнее, когда имеются соответствующие частотные характеристики. Частотные характеристики применяются при исследовании систем, которые невозможно описать дифференциальными уравнениями (черный ящик).

52

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке lekcii__tau