Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РГР / Lineinie / V9 / Паранин2.docx
Скачиваний:
62
Добавлен:
22.02.2014
Размер:
130.25 Кб
Скачать

3.Определить передаточную функцию системы.

3.1.Передаточную функцию разомкнутой системы при равенстве нулю задающего воздействия G(t)=0

W1*W2*W3*W4

W5

MH(s)

C

G(s) A B Y(s)

W6*W7

Схема разомкнутой системы

Y(s) = B-C =A* W1*W2*W3*W4*W6*W7 - MH(s)* W5*W6*W7

Если канал обратной связи разомкнут, то A=G(s), тогда

Y(s) = G(s)* W1*W2*W3*W4*W6*W7 - MH(s)* W5*W6*W7 где, по условию g(t)=0,

Следовательно передаточная функция разомкнутой системы при равенстве нулю задающего воздействия :

Wp(s) = - W5*W6*W7 =

Подставив значения, получим:

Wp(s) =

3.2. Передаточную функцию разомкнутой системы при равенстве нулю возмущающего воздействия МН(t)=0

Y(s) = G(s)* W1*W2*W3*W4*W6*W7

Следовательно передаточная функция разомкнутой системы при равенстве нулю возмущающего воздействия :

Wp(s) = W1*W2*W3*W4*W6*W7 =

Подставив значения, получим:

Wp(s) =

3.3. Передаточную функцию замкнутой системы по ошибке при действии задающего воздействия и равенстве 0 возмущающего воздействия

W1*W2*W3*W4*W6*W7

G(s) E(s) Y(s)

Y(s)

Схема замкнутой системы при действии задающего воздействия и равенстве 0 возмущающего воздействия

В данном случае, выходной величиной будет E(s) :

E(s) = G(s)-Y(s) = G(s)-E(s)* W1*W2*W3*W4*W6*W7

Тогда, E(s) = * G(s)

Передаточная функция замкнутой системы по ошибке :

ФE(s) = =

Подставив значения, получим:

ФE(s) =

3.4. Передаточную функцию замкнутой системы по ошибке при действии возмущающего воздействия и равенстве 0 задающего воздействия

W1*W2*W3*W4

W5

MH(s)

G(s) E(s) Y(s)

W6*W7

Y(s)

В данном случае :

E(s) = G(s)-Y(s) = G(s) - E(s)* W1*W2*W3*W4*W6*W7 + MH(s)* W5*W6*W7 , где G(s)=0

Тогда, E(s) = = н(s)

Передаточная функция замкнутой системы по ошибке :

ФE(s) =

Подставив значения, получим:

ФE(s) =

4.Вычислить временные характеристики

4.1.Рассмотреть САУ при равенстве нулю возмущающего и g(t)=const при нулевых начальных условиях y(0)=0 y'(0)=0 y"(0)=0

Математическая модель САУ :

Y(s) = G(s)* - MH(s)*

Ty*To*s3*Y(s) + (Ty+To)*s2*Y(s) + s*Y(s) + Кпепруор*Y(s) = Кпепруор*G(s) -

–Bo*Kp*(Ty*s+1)*MH(s)

Подставим значения и применим обратное преобразование Лапласа, где S=:

0,04*y```(t) + 0,5*y``(t) + y`(t) + 11,484*y(t) = 11,484*g(t)**MH`(t) – 1.75**MH(t)

или, разделив на 11,48 , получим:

0,0035*y```(t) + 0,0435*y``(t) + 0,087*y`(t) + y(t) = g(t) - 0,0656* MH`(t) - 0,656* MH(t)

4.2.С помощью обратного преобразования Лапласа найти переходную и весовую функции

Положим МН(t) = 0, тогда передаточная функция системы равна :

W(s) = или

Пусть на вход системы подается воздействие g(t) = 1(t) – скачок , тогда при обратном преобразовании Лапласа Y(s) будет изображением переходной функции H(s), тогда :

H(s) = , где g(t) = 1(t) G(s) =

Запишем характеристическое уравнение :

= 0

Найдем его корни :

S1 = 0;

= 0 или a = 0

Сделаем замену, s= y -

p = ; q =

Q = = 26100

Т.к. Q > 0, то α = ;β =

y2 = α + β ;

y3,4 = ;

y2 = -8,19;

y3 = 4,095 +4,82*i ;

y4 = 4,095 - 4,82*i ;

Тогда,

S2 = y2 - = -12,357 ;

S3 = y3 - = -0,071 + 4,82*i ;

S4 = y4 - = -0,071 - 4,82*i ;

Тогда, H(s) =

Используя обратное преобразование Лапласа найдем переходную функцию:

h(t) =

График переходной функции

Зная переходную функцию, найдем функцию веса:

w(t) = h`(t)

w(t) =

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке V9