Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
перевод книги швед.doc
Скачиваний:
29
Добавлен:
20.11.2018
Размер:
8.39 Mб
Скачать

Implications of Liquor Circulation

Process challenges by the accumulation of dissolved matter and concerns regarding

the resistance of construction materials are not the only issues brought about

by liquor circulation. Scaling is another important factor. For example, calcium

7.10 Bleach Plant Liquor Circulation 893

oxalate scaling in connection with liquor circulation has been reported to challenge

bleach plant operations worldwide [3–5]. Scales often occur in an environment

where the pH or temperature of a process liquor undergoes a change.

In addition, mechanical reasoning plays a role in liquor circulation. As an example,

each piece of rotary washing equipment, including drum washers and

presses, has its design limit with regard to the temperature difference between

feed pulp and wash liquor.

Due to the large variety of bleaching sequences and installed equipment, the

targets, measures and implications related to bleach plant liquor circulation differ

significantly between mills. The complexity of liquor cycles is increased by the behavior

of the washing equipment used. Computerized process simulation has

proven very helpful for reproducing and evaluating industrial bleaching applications.

Since every bleach plant is unique in processes and construction materials,

a compromise must be found from case to case between the benefits and disadvantages

of liquor circulation.

894 7Pulp Bleaching

References

Section 7.1

1 Sixta, H., Preparation and characterization

of spruce and beech dissolving

pulps prepared by both acid sulfite and

prehydrolysis kraft cooking. R&D,

Lenzing AG: Lenzing, 2002. p. 20.

2 Gierer, J., Basic principles of bleaching.

Part 1: Cationic and radical processes.

Holzforschung, 1990; 44(5): 387–394.

3 Lachenal, D., M. Muguet, Degradation

of residual lignin in kraft pulp with

ozone. Application to bleaching. Nordic

Pulp and Paper Research Journal, 1992; 1 :

25–29.

4 Lachenal, D., N.B. Nguyen-Thi. TCF

bleaching – Which sequence to choose?

In Tappi Proceedings, Pulping Conference,

1993.

5 Grundelius, R., Oxidation equivalents,

OXE – an alternative to active chlorine.

Tappi Journal, 1993; 76(1): 133–135.

6 Ragnar, M., M. Leite, Bleaching of cellulose

pulp in a first chlorine dioxide

bleaching step. Kvaerner pulping: PCT,

2004, WO 2004/079087M.

7 Ragnar, M., Evaluation of bleachability –

A recommendation against the OXE

concept. Nordic Pulp and Paper Research

Journal, 2004; 19(3): 286–290.

Section 7.2

1 Gullichsen, J., E. Harkonen, Medium

consistency technology part 1, fundamental

data. Tappi J., 1981; 64(6):

69–72.

2 Meyer, R., D. Wahren, On the elastic

properties of three-dimensional fiber

networks. Svensk. Papperstidn., 1964;

67(10): 432–436.

3 Bennington, C.P.J., R.J. Kerekes,

J.R. Grace, The yield stress of fiber suspensions.

Can. J. Chem. Eng., 1990; 68:

748–757.

4 Wikstrom, T., Y. Ronnmark,

A. Rasmuson, A new correlation for the

onset of fluidisation in pulp suspensions.

Nordic Pulp Paper Res. J., 2002;

17(4): 374–381.

5 Bennington, C.P.J., R.J. Kerekes, Power

requirements for pulp suspension fluidization.

Tappi J., 1996; 79(2): 253–258.

6 Wahren, D., Fiber structures in papermaking

operations. IPC Symposium

Paper Science and Technology – The

Cutting Edge. Appleton: IPC, 1980.

7 Pettersson, J., An experimental investigation

of the flow behaviour of fiber/liquid/

gas suspensions at MC-concentrations.

Chalmers University of Technology:

Goteborg, Sweden, 2002.

References 895

8 Bokstrom, M., M. Wennerstrom, Ozone

comes of age. Pulp Paper Europe, 2001;

6(5).

9 Duflo Pump (product presentation).

Kvaerner Pulping: Karlstad, Sweden,

2003.

10 Sulzer Pumpen und Ruhrwerke fur die

Zellstoff- und Papierindustrie. Sulzer

Pumps: Karhula, Finland, 2001.

11 Jansson, U., Two generations of MC

pumps and a third to improve the first

two. Fiberlines, 2003(1): 22–25.

12 Dual Mixers (product leaflet). Kvaerner

Pulping: Karlstad, Sweden, 2000.

13 S-Mixer (product leaflet). Metso Paper:

Sundsvall, Sweden, 2003.

14 Jetmixer (product leaflet). Kvaerner

Pulping: Karlstad, Sweden, 1999.

15 FlowHeater (product leaflet). Metso

Paper: Sundsvall, Sweden, 2002.

16 Dynamic Steam Heater (product leaflet).

Andritz: Graz, Austria, 2003.

17 Tower Equipment for Pulp Distribution

and Discharge (product leaflet). Metso

Paper: Sundsvall, Sweden, 2003.

18 PREPOX Reactor (product leaflet).

Kvaerner Pulping: Karlstad, Sweden,

1997.

19 Sulzer, Salomix SLG Agitator (product

leaflet). Sulzer Pumps: Karhula, Finland,

2001.

Section 7.3.1

1 Hartler, N., H. Norrstrom, S. Rydin,

Oxygen-alkali bleaching of sulphate

pulp. Svensk. Papperstidn., 1970; 73(21):

696–703.

2 Nikitin, V.M., G.L. Akim, Delignification

and chemical refining of

unbleached pulp with oxygen-alkali.

Trudy Leningrad. Lesotekh. Akad.im. S.M.

Kirova, 1956; 75: 145–155.

3 Nikitin, V.M., A.V. Obolenskaya, Oxidation

of lignin with oxygen in alkaline

medium. Trudy Leningrad. Lesotekh.

Akad.im. S.M. Kirova, 1958; 80: 65–75.

4 Nikitin, V.M., A.V. Obolenskaya,

G.L. Akim, The oxidation of lignin by

oxygen in alkaline medium and the

practical application of this reaction.

Trudy Leningrad. Lesotekh. Akad.im. S.M.

Kirova, 1960; 91(2): 217–225.

5 Nikitin, V.M., G.L. Akim, Bleaching and

refining of pulp with oxygen and alkali.

Bumazh. Prom., 1960; 35(12): 5–7.

6 Nikitin, V.M., G.L. Akim,

V.P. Shchegolev, Delignification and

refining of unbleached sulfite pulp by

the oxygen-alkali method. III. Application

of the molecular oxygen for bleaching

of birch pulp. Trudy Leningrad. Lesotekh.

Akad.im. S.M. Kirova, 1960; 85:

3–11.

7 Harris, G., US Patent 2,673,148, 1954.

8 Marshall, H., US Patent 2,686,120,

1954.

9 Grangaard, D., G. Saunders. CAN

611,503, 1960.

10 Kratzl, K., et al., Model studies on reactions

occurring in oxidations of lignin

with molecular oxygen in alkaline

media. Wood Sci. Technol., 1974; 8(1):

35–49.

11 Robert, A., et al., An oxygen treatment

of pulps to further subsequent bleaching.

II. Bleaching pulps previously treated

with oxygen. Assoc. Techn. Ind. Papetiere,

Bull., 1964; 18(4): 166–176.

12 Robert, A., et al., An oxygen treatment

of pulps to further subsequent bleaching.

I. Improvements obtained by using

a catalyst; optimum conditions in the

oxygen treatment. Assoc. Techn. Ind.

Papetiere, Bull., 1964; 18(4): 151–165.

13 Robert, A., P. Traynard,

O. Martin-Borret. US Patent 3,384,533,

1968.

14 Magnotta, V., et al., High-kappa pulping

and extended oxygen delignification to

increase yield. In Breaking the Pulp

Yield Barrier, Symposium Proceedings.

Atlanta, GA: TAPPI Press, 1998.

15 Reid, D.W., J. Ayton, T. Mullen, CPPA

oxygen delignification survey. Pulp

Paper Can., 1998; 99(11): 43–47.

16 Nasman, L., G. Annergren, Mediumconsistency

oxygen bleaching. Tappi,

1980; 63(4): 105–109.

17 Albert, R. In Proceedings, International

Non-Chlorine Bleaching Conference.

Orlando, Florida, 1996.

18 Carter, D.N., et al., Performance parameters

of oxygen delignification. Tappi J.,

1997; 80(10): 111–117.

896 7Pulp Bleaching

19 Axegard, P., B. Backlund, Ecocyclic Pulp

Mill – “KAM”. Final report, 1996–2002.

STFI, Swedish Pulp and Paper Research

Institute: Stockholm, Sweden, 2003.

20 Croon, I. In Proceedings of the 1981

TAPPI Oxidative Bleaching Seminar.

Denver, CO, 1981.

21 Ragnar, M., The technology of oxygen

delignification and bleaching of chemical

pulp. Karlstadt, Sweden: Kvaerner

Pulping AB, 2002.

22 Bergnor, E., P. Sandstrom, Modified

cooking and oxygen bleaching for

improved production economy and

reduced effluent load. Nordic Pulp Paper

J., 1988; 3(3): 145–155.

23 Parsad, B., et al., Mill closure with highkappa

pulping and extended oxygen

delignification. Tappi, 1996; 79(9):

144–152.

24 Kleppe, P.J., S. Storebraten, Delignifying

high-yield pulps with oxygen and

alkali. Tappi, 1985; 68(7): 68–73.

Section 7.3.2

1 Gierer, J., Chemistry of Delignification.

1. General Concept and Reactions During

Pulping. Wood Sci. Technol., 1985;

19(4): 289–312.

2 Gierer, J., The chemistry of delignification.

A general concept. Part I. Holzforschung,

1982; 36(1): 43–51.

3 Gierer, J., Formation and involvement

of superoxide (O2_-/HO2_) and hydroxyl

(OH_) radicals in TCF bleaching processes:

A review. Holzforschung, 1997;

51(1): 34–46.

4 Gratzl, J.S., The chemical principles of

pulp bleaching with oxygen, hydrogen

peroxide and ozone – a short review.

Papier, 1992; 46(10A): V1–V8.

5 Gierer, J., Reactions of lignin during

pulping – a description and comparison

of conventional pulping processes.

Svensk. Papperstidn. – Nordisk Cellulosa,

1970; 73(18): 571–596.

6 Gierer, J., The Chemistry of Delignification.

A General Concept Part II. Holzforschung,

1982; 36(1): 55–64.

7 Gierer, J., Chemistry of Delignification.

2. Reactions of Lignins During Bleaching.

Wood Sci. Technol., 1986; 20(1):

1–33.

8 Gierer, J., F. Imsgard, Reactions of lignins

with oxygen and hydrogen peroxide

in alkaline media. Svensk. Papperstidn.

Nordisk Cellulosa, 1977; 80(16):

510–518.

9 Gierer, J., The interplay between oxygen-

derived radical species in the

delignification during oxygen and

hydrogen peroxide bleaching. In Lignin:

Historical, Biological, and Materials Perspectives.

2000: 422–446.

10 Axelsson, P., M. Ek, A. Teder, The influence

of alkali charge and temperature in

the kraft cook on the QPQP bleachability

and the kappa number composition

of birch pulp. Nordic Pulp Paper Res. J.,

2002; 17(3): 206–212.

11 Backstrom, M., M. Hagglund, L. Olm,

Effect of cooking temperature during

extended delignification – Selectivity,

strength properties and TCF-bleachability.

Pap. Puu, 1996; 78(6–7): 392–397.

12 Ban, W.P., J. Singh, L.A. Lucia, Kraft

green liquor pretreatment of softwood

chips. Part III: Lignin chemical modifications.

Holzforschung, 2003; 57(3):

275–281.

13 Carvalho, M.G.V., A.A. Martins, M.M.L.

Figueiredo, Kraft pulping of Portuguese

Eucalyptus globulus: Effect of process

conditions on yield and pulp properties.

Appita J., 2003; 56(4): 267–274.

14 Colodette, J.L., J.L. Gomide, R. Girard,

A.S. Jaaskelainen, D.S. Argyropoulos,

Influence of pulping conditions on

eucalyptus kraft pulp yield, quality, and

bleachability. Tappi J., 2002; 1(1): 14–20.

15 Daniel, A.I.D., C.P. Neto, D.V. Evtuguin,

A.J.D. Silvestre, Hexenuronic acid contents

of Eucalyptus globulus kraft pulps:

Variation with pulping conditions and

effect on ECF bleachability. Tappi J.,

2003; 2(5): 3–8.

16 Dos Santos, C.A., L.D. Shackford,

W.J. Miller, Development of ECF

sequence using stages in high temperatures

for chlorine dioxide (DHT) and

hydrogen peroxide (PHT). O Papel

(Brazil), 2002; 78–89.

17 Neto, C.P., D.V. Evtuguin, F.P. Furtado,

A.P.M. Sousa, Effect of pulping conditions

on the ECF bleachability of EucaReferences

897

lyptus globulus kraft pulps. Ind. Eng.

Chem. Res., 2002; 41(24): 6200–6206.

18 Nilsson, D., U. Edlund,

K. ElgChristofferson, M. Sjostrom,

R. Agnemo, The effect of designed

wood storage on the brightness of

bleached and unbleached thermo mechanical

pulp. Nordic Pulp Paper Res. J.,

2003; 18(4): 369–376.

19 Olm, L., D. Tormund, Kraft pulping

with sulfide pretreatment Part 2. The

influence of pretreatment and cooking

conditions on the pulp properties,

bleachability in a TCF-sequence and

strength properties. Nordic Pulp Paper

Res. J., 2000; 15(1): 70–79.

20 Ragnar, M., Alkaline extraction and a

control strategy for the chlorine dioxide

charge to the final stage in DED bleaching.

Nordic Pulp Paper Res. J., 2003;

18(2): 162–167.

21 Sjodahl, R.G., M. Ek, M.E. Lindstrom,

The effect of sodium ion concentration

and dissolved wood components on the

kraft pulping of softwood. Nordic Pulp

Paper Res. J., 2004; 19(3): 325–329.

22 Van Tran, A., Effect of cooking temperature

on kraft pulping of hardwood.

Tappi J., 2002; 1(4): 13–19.

23 Yang, R.M., L. Lucia, A.J. Ragauskas,

H. Jameel, Oxygen delignification

chemistry and its impact on pulp fibers.

J. Wood Chem. Technol., 2003; 23(1):

13–29.

24 Van Tran, A., Effect of pH on oxygen

delignification of hardwood kraft pulp.

Pap. Puu, 2001; 83(5): 405–410.

25 Axelsson, P., M. Ek, A. Teder, Influence

of alkali profiling in birch kraft pulping

on QPQP bleachability. Nordic Pulp

Paper Res. J., 2004; 19(1): 37–43.

26 Bikova, T., A. Treimanis, M. Eisimonte,

V. Klevinska, Relationship between the

alkali solubility of hemicelluloses and

lignin from unbleached hardwood kraft

pulp and pulp bleachability. J. Pulp

Paper Sci., 2003; 29(6): 208–212.

27 Bjorklund, M., U. Germgard, J. Basta,

The influence of softwood kraft cooking

conditions on the brightness development

in ECF bleaching. Appita J., 2004;

57(3): 234–239.

28 Brannvall, E., R. Gustafsson, A. Teder,

Properties of hyperalkaline polysulphide

pulps. Nordic Pulp Paper Res.

J., 2003; 18(4): 436–440.

29 Gellerstedt, G., W.W. Al-Dajani, Bleachability

of alkaline pulps. Part 1. The

importance of b-aryl ether linkages in

lignin. Holzforschung, 2000; 54(6):

609–617.

30 Gellerstedt, G., W.W. Al-Dajani, Some

factors affecting the brightness and

TCF-bleachability of kraft pulp. Nordic

Pulp Paper Res. J., 2003; 18(1): 56–62.

31 Klevinska, V., T. Bykova, A. Treimanis,

Multistage kraft cooking as a way of producing

bleachable grade alder pulp. Cellulose

Chem. Technol., 2000; 34(5–6):

581–593.

32 Rawat, N., T.I. McDonough, Effects of

pulping conditions on the bleachability

of hardwood kraft pulps: 1. Effects of

effective alkali charge in the pulping of

birch and maple. Pulping Conference,

Proceedings of the Technical Association

of the Pulp and Paper Industry,

1998: 883–891.

33 Sixta, H., Comparative evaluation of different

concepts of sulfite pulping technology.

Papier, 1998; 52(5): 239–249.

34 Sun, Y., D.S. Argyropoulos, R.M. Berry,

M. Fenster, A. Yu, The effect of metal

ions on the reaction of hydrogen peroxide

with Kraft lignin model compounds.

Can. J. Chem., 1999: 667–675.

35 Lucia, L.A., A.J. Ragauskas, F.S. Chakar,

Comparative evaluation of oxygen

delignification processes for low- and

high-lignin-content softwood kraft

pulps. Ind. Eng. Chem. Res., 2002;

41(21): 5171–5180.

36 Friman, L., L. Logenius, R. Agnemo,

H.E. Hogberg, Comparison of metal

profiles in thermomechanical pulping

processes in which either hydrogen peroxide

or dithionite bleaching is used –

Content of metals in process waters and

in chips and pulp samples before and

after extraction with acid or a chelating

agent. Pap. Puu, 2003; 85(6): 334–339.

37 Baptista, C., N. Belgacem, A.P. Duarte,

The effect of surfactants on kraft pulping

of Pinus pinaster. Appita J., 2004;

57(1): 35–39.

38 Pisuttipiched, S., E. Retulainen,

R. Malinen, H. Kolehmainen,

M. Ruhanen, S. Siripattanadilok, Effect

898 7Pulp Bleaching

of harvesting age on the quality of Eucalyptus

camaldulensis bleached kraft pulp.

Appita J., 2003; 56(5): 385–390.

39 Svedman, M., P. Tikka, M. Luhtanen,

Effects of softwood morphology and

chip thickness on pulping with a displacement

kraft batch process. Tappi J.,

1998; 81(7): 157–168.

40 Persson, E., J. Bergquist, T. Elowson,

J. Jakara, B. Lonnberg, Brightness,

bleachability and colour reversion of

groundwood made of wet- and drystored

Norway spruce (Picea abies) pulpwood.

Pap. Puu, 2002; 84(6): 411–415.

41 Furtado, F.P., D.V. Evtuguin,

T.M. Gomes, Effect of the acid stage in

ECF bleaching on Eucalyptus globulus

kraft pulp bleachability and strength.

Pulp Paper Can., 2001; 102(12): 89–92.

42 Ju, Y., M. Kishino, H. Ohi, Preparation

of high-yielded softwood chemical pulp

and its bleachability. Sen-I Gakkaishi,

2000; 56(4): 199–204.

43 Zhan, H., B. Yue, W. Hu, W. Huang,

Kraft reed pulp TCF bleaching with

enzyme pretreatment. Cellulose Chem.

Technol., 1999; 33(1): 53–60.

44 Springer, E.L., J.D. McSweeny, Treatment

of softwood kraft pulps with peroxymonosulfate

before oxygen delignification.

Tappi J., 1993: 194–199.

45 Lachenal, D., L. Bourson, M. Muguet,

A. Chauvet, Lignin activation improves

oxygen and peroxide delignification. Cellulose

Chem. Technol., 1990; 24: 593–601.

46 Jiang, Z.H., B. Van Lierop, A. Nolin,

R. Berry, A new insight into the bleachability

of kraft pulps. J. Pulp Paper Sci.,

2003. 29(2): 54–58.

47 Gellerstedt, G., K. Gustafsson, A. Labidi,

F. Pla, Alkaline delignification of hardwoods

in a flow-through reactor working

at a low residence time. 4. Characterization

of lignins by oxidative-degradation

and aminolysis. Holzforschung,

1992; 46(3): 199–204.

48 Gellerstedt, G., D. Robert, Structuralchanges

in lignin during kraft cooking.

7. Quantitative C-13 NMR analysis of

kraft lignins. Acta Chim. Scand. Series B.

Org. Chem. Biochem., 1987; 41(7):

541–546.

49 Gellerstedt, G., K. Gustafsson, Structural-

changes in lignin during kraft

cooking. 5. Analysis of dissolved lignin

by oxidative-degradation. J. Wood Chem.

Technol., 1987; 7(1): 65–80.

50 Gellerstedt, G., E. Lindfors, Structuralchanges

in lignin during kraft cooking.

4. Phenolic hydroxyl-groups in wood

and kraft pulps. Svensk. Papperstidn. –

Nordisk Cellulosa, 1984; 87(15):

R115–R118.

51 Robert, D.R., M. Bardet, G. Gellerstedt,

E.L. Lindfors, Structural-changes in lignin

during kraft cooking. 3. On the

structure of dissolved lignins. J. Wood

Chem. Technol., 1984; 4(3): 239–263.

52 Gellerstedt, G., E.L. Lindfors, C.

Lapierre, B. Monties, Structural-changes

in lignin during kraft cooking. 2. Characterization

by acidolysis. Svensk. Papperstidn.

Nordisk Cellulosa, 1984; 87(9):

R61–R67.

53 Gellerstedt, G., J. Gierer, Reactions of

lignin during neutral sulphite cooking.

1. Behaviour of beta-arylether structures.

Acta Chim. Scand., 1968; 22(8):

2510.

54 Gierer, J., Reactions of lignin during

sulfite and sulfate cooking. Papier, 1973;

27(12): 629–633.

55 Gellerstedt, G., J. Gierer, Reaction of lignin

during neutral sulphite cooking.

2. Behaviour of phenylcoumaran structures.

Acta Chim. Scand., 1968; 22(6):

2029.

56 Gierer, J., L.A. Smedman, Reactions of

lignin during sulphate cooking. 10. Synthesis

and alkaline treatment of model

compounds representing intermediary

episulphide structures. Acta Chim.

Scand., 1966; 20(7): 1769.

57 Gierer, J., N.H. Wallin, Reactions of lignin

during sulphate cooking. 9. Interaction

between thiol groups and intermediary

epoxide structures. Acta Chim.

Scand., 1965; 19(6): 1502.

58 Gierer, J., L.A. Smedman, Reactions of

lignin during sulphate cooking. 8.

Mechanism of splitting of beta-arylether

bonds in phenolic units by white liquor.

Acta Chim. Scand., 1965; 19(5): 1103.

59 Gierer, J., N.H. Wallin, B. Lenz, Reactions

of lignin during sulphate cooking.

V. Model experiments on splitting of

aryl-alkyl ether linkages by 2 N sodium

References 899

hydroxide + by white liquor. Acta Chim.

Scand., 1964; 18(6): 1469.

60 Gellerstedt, G., E.L. Lindfors, Structural-

changes in lignin during kraft

pulping. Holzforschung, 1984; 38(3):

151–158.

61 Gellerstedt, G., L. Zhang, Chemistry of

TCF-bleaching with oxygen and hydrogen

peroxide. In Oxidative Delignification

Chemistry, D.S. Argyropoulos, Ed.

American Chemical Society, Oxford

University Press:Washington, DC,

2001: 61–72.

62 Tamminen, T.L., B.R. Hortling, Lignin

reactions during oxygen delignification

of various alkaline pulps. In Oxidative

Delignification Chemistry, D.S. Argyropoulos,

Ed. American Chemical Society,

Oxford University Press:Washington,

DC, 2001: 73–91.

63 Lawoko, M., R. Berggren, F. Berthold,

G. Henriksson, G. Gellerstedt, Changes

in the lignin-carbohydrate complex in

softwood kraft pulp during kraft and

oxygen delignification. Holzforschung,

2004; 58(6): 603–610.

64 Olkkonen, C., H. Tylli, I. Forsskahl,

A. Fuhrmann, T.Hausalo, T. Tamminen,

B. Hortling, J. Janson, Degradation of

model compounds for cellulose and

ligno-cellulosic pulp during ozonation

in aqueous solution. Holzforschung,

2000; 54(4): 397–406.

65 Laine, C., T. Tamminen, B. Hortling,

Carbohydrate structures in residual lignin-

carbohydrate complexes of spruce

and pine pulp. Holzforschung, 2004;

58(6): 611–621.

66 Antonsson, S., M.E. Lindstrom,

M. Ragnar, A comparative study of the

impact of the cooking process on oxygen

delignification. Nordic Pulp Paper

Res. J., 2003; 18(4): 388–394.

67 Roost, C., M. Lawoko, G. Gellerstedt,

Structural changes in residual kraft

pulp lignins. Effects of kappa number

and degree of oxygen delignification.

Nordic Pulp Paper Res. J., 2003; 18(4):

395–399.

68 Bourbonnais, R., M. Paice, Voltammetric

measurement of lignin in pulp

and paper samples – An electron transfer

catalytic approach with mediators.

J. Electrochem. Soc., 2004; 151(7):

E246–E249.

69 Bourbonnais, R., L. Valeanu, M.G. Paice,

Voltammetric analysis of the bleachability

of softwood kraft pulps. Holzforschung,

2004; 58(6): 581–587.

70 Lundquist, K., On the degradation of

lignin during pulping conditions. In

First International Symposium on Delignification

with Oxygen Ozone and Peroxides.

Raleigh, North Carolina, USA:

North Caroline State University, 1975.

71 Miksche, G.E., Lignin reactions in alkaline

pulping processes (Rate process in

soda pulping). In First International

Symposium on Delignification with Oxygen

Ozone and Peroxides. Raleigh, North

Carolina, USA: North Caroline State

University, 1975.

72 Argyropoulos, D.S., Y. Sun, E. Palus,

Isolation of residual kraft lignin in high

yield and purity. J. Pulp Paper Sci., 2002;

28(2): 50–54.

73 Al-Dajani, W.W., G. Gellerstedt, On the

isolation and structure of softwood residual

lignins. Nordic Pulp Paper Res. J.,

2002; 17(2): 193–198.

74 Jaaskelainen, A.S., Y. Sun,

D.S. Argyropoulos, T. Tamminen,

B. Hortling, The effect of isolation

method on the chemical structure of residual

lignin. Wood Sci. Technol., 2003;

37(2): 91–102.

75 Lachenal, D., G. Mortha, R.M. Sevillano,

M. Zaroubine, Isolation of residual lignin

from softwood kraft pulp. Advantages

of the acetic acid acidolysis method.

C. R. Biol., 2004; 327(9–10):

911–916.

76 Capanema, E.A., M.Y. Balakshin,

C.L. Chen, An improved procedure for

isolation of residual lignins from hardwood

kraft pulps. Holzforschung, 2004;

58(5): 464–472.

77 Halttunen, M., J. Vyorykka, B. Hortling,

T. Tamminen, D. Batchelder,

A. Zimmermann, T. Vuorinen, Study of

residual lignin in pulp by UV resonance

Raman spectroscopy. Holzforschung,

2001; 55(6): 631–638.

78 Tamminen, T.L., B.R. Hortling, Isolation

and characterization of residual lignin.

In Advances in Lignocellulosics Char900

7Pulp Bleaching

acterization, D.S. Argyropoulos, Ed.

Tappi Press: Atlanta, GA, 1999: 1–42.

79 Balakshin, M.Y., E.A. Capanema,

C.-L. Chen, H.S. Gracz, Elucidation of

the structures of residual and dissolved

pine kraft lignins using an HMQC

NMR technique. J. Agric. Food Chem.,

2003; 51(21): 6116–6127.

80 Fu, S.Y., L.A. Lucia, Investigation of the

chemical basis for inefficient lignin

removal in softwood kraft pulp during

oxygen delignification. Ind. Eng. Chem.

Res., 2003; 42(19): 4269–4276.

81 Froass, P.M., A.J. Ragauskas, J. Jiang,

Nuclear magnetic resonance studies. 4.

Analysis of residual lignin after kraft

pulping. Ind. Eng. Chem. Res., 1998;

37(8): 3388–3394.

82 Lachenal, D., J.C. Fernandes,

P. Froment, Behavior of residual lignin

in kraft pulp during bleaching. J. Pulp

Paper Sci., 1995; 21(5): J173–J177.

83 Argyropoulos, D.S., Y. Liu, The role and

fate of lignin’s condensed structures

during oxygen delignification. J. Pulp

Paper Sci., 2000; 26(3): 107–113.

84 Froass, P.M., A.J. Ragauskas, J. Jiang,

Chemical structure of residual lignin

from kraft pulp. J. Wood Chem. Technol.,

1996; 16(4): 347–365.

85 Froass, P.M., A.J. Ragauskas, J.E. Jiang,

NMR studies Part 3: Analysis of lignins

from modern kraft pulping technologies.

Holzforschung, 1998; 52(4):

385–390.

86 Capanema, E.A., M.Y. Balakshin,

J.F. Kadla, A comprehensive approach

for quantitative lignin characterization

by NMR spectroscopy. J. Agric. Food

Chem., 2004; 52: 1850–1860.

87 Zhang, L., G. Henriksson, G. Gellerstedt,

The formation of b-b structures in

lignin biosynthesis – Are there two different

pathways? Org. Biomol. Chem.,

2003: 3621–3624.

88 Kishimoto, T., A. Ueki, Y. Sano, Delignification

mechanism during high-boiling

solvent pulping. Part 3. Structural

changes in lignin analyzed by 13C-NMR

spectroscopy. Holzforschung, 2003; 57:

602–610.

89 Kishimoto, T., A. Ueki, H. Takamori,

Y. Uraki, M. Ubukata, Delignification

mechanism during high-boiling solvent

pulping. Part 6. Changes in lignin structure

analyzed by 1H–13C correlation 2-D

NMR spectroscopy. Holzforschung, 2004;

58: 355–362.

90 Northey, R.A., A review of lignin model

compound reactions under oxygen

bleaching conditions. In Oxidative

Delignification Chemistry,

D.S. Argyropoulos, Ed. American

Chemical Society, Oxford University

Press: Washington, DC, 2001; 44–60.

91 Zou, H., J.M. Genco, A. Van Heiningen,

B. Cole, R. Fort, Effect of hemicellulose

content in kraft brownstock on oxygen

delignification. TAPPI Fall technical

Conference and Trade Fair, 2002:

193–209.

92 Saake, B., R. Lehnen, E. Schmekal,

A. Neubauer, H.H. Nimz, Bleaching of

formacell pulp from aspen wood with

ozone and peracetic acid in organic solvents.

Holzforschung, 1998; 52(6):

643–650.

93 Ruiz, J., J. Freer, J. Rodriguez, J. Baeza,

Ozone organosolv bleaching of radiata

pine kraft pulp. Wood Sci. Technol.,

1997; 31(3): 217–223.

94 Fu, S.Y., X.S. Chai, Q.X. Hou, L.A. Lucia,

Chemical basis for a selectivity threshold

to the oxygen delignification of kraft

softwood fiber as supported by the use

of chemical selectivity agents. Ind. Eng.

Chem. Res., 2004; 43(10): 2291–2295.

95 Francis, R.C., Y.Z. Lai, C.W. Dence,

T.C. Alexander, Estimating the concentration

of phenolic hydroxyl-groups in

wood pulps. Tappi J., 1991; 74(9):

219–224.

96 Gellerstedt, G., K. Gustafsson,

R.A. Northey, Nordic Pulp Paper Res. J.,

1988; 3(2): 87–94.

97 Gellerstedt, G., Chemical structure of

pulp components. In Pulp Bleaching:

Principles and Practice, C.W. Dence,

D.W. Reeve, Eds. Tappi Press: Atlanta,

GA, 1996: 91–111.

98 Asgari, F., D.S. Argyropoulos, Fundamentals

of oxygen delignification. Part

II. Functional group formation elimination

in residual kraft lignin. Can. J.

Chem.-Rev. Canadienne De Chimie, 1998;

76(11): 1606–1615.

99 Yokoyama, T., Y. Matsumoto,

G. Meshitsuka, Reaction selectivity of

References 901

active oxygen species in oxygen-alkali

bleaching. J. Wood Chem. Technol., 1999;

19(3): 187–202.

100 Johansson, E., S. Ljunggren, The

kinetics of lignin reactions during oxygen

bleaching. 4. The reactivities of different

lignin model compounds and the

influence of metal-ions on the rate of

degradation. J. Wood Chem. Technol.,

1994; 14(4): 507–525.

101 Kratzl, K., P. Claus, W. Lonsky,

J.S. Gratzl, Model studies on reactions

occurring in oxidations of lignin with

molecular-oxygen in alkaline media.

Wood Sci. Technol., 1974; 8(1): 35–49.

102 Sultanov, V.S., A.F.A. Wallis, Reactivities

of guaiacyl and syringyl lignin model

phenols towards oxidation with oxygenalkali.

J. Wood Chem. Technol., 1991;

11(3): 291–305.

103 Evtuguin, D.V., D. Robert, The detection

of muconic acid type structures in oxidized

lignins by C-13 NMR spectroscopy.

Wood Sci. Technol., 1997; 31(6):

423–431.

104 Moe, S.T., A.J. Ragauskas, Oxygen

delignification of high-yield kraft pulp

part I: Structural properties of residual

lignins. Holzforschung, 1999; 53(4):

416–422.

105 Duarte, A.P., D. Robert, D. Lachenal,

Eucalyptus globulus kraft pulp residual

lignin Part 2. Modification of residual

lignin structure in oxygen bleaching.

Holzforschung, 2001; 55(6): 645–651.

106 Lai, Y.Z., H. Xu, R. Yang. In Lignin: Historical,

Biological, and Materials Perspectives,

W.G. Glasser, R.A. Northey and

T.P. Schultz, Eds. American Chemical

Society, Oxford University Press:

Washington D.C, 2000.

107 Ede, R.M., G. Brunow, L.K. Simola,

J. Lemmetyinen, 2-Dimensional

H-1-H-1 chemical-shift correlation and

J-resolved NMR studies on isolated and

synthetic lignins. Holzforschung, 1990;

44(2): 95–101.

108 Lundquist, K., Nordic Pulp Paper Res. J.,

1992; 7(1): 4–8, 16.

109 Ede, R.M., R. Smit, I.D. Suckling. Oral

Presentation. In 9th International Symposium

of Wood and Pulping Chemistry.

Montreal, 1997.

110 Adler, E., Lignin chemistry – past, present

and future. Wood Sci. Technol., 1977;

11(3): 169–218.

111 Zhang, L., G. Gellerstedt. Detection and

determination of carbonyls and quinones

by modern NMR techniques. In

10th International Symposium of Wood

and Pulping Chemistry. Yokohama,

1999.

112 Drumond, M., M. Aoyama, C.L. Chen,

D. Robert, Substituent effects on C-13

chemical-shifts of aromatic carbons in

biphenyl type lignin model compounds.

J. Wood Chem. Technol., 1989; 9(4):

421–441.

113 Ahvazi, B.C., G. Pageau,

D.S. Argyropoulos, On the formation of

diphenylmethane structures in lignin

under kraft, EMCC (R), and soda pulping

conditions. Can. J. Chem. – Rev.

Canadienne De Chimie, 1998; 76(5):

506–512.

114 Chang, H.-M., H.T. Chen, J.S. Gratzl,

S. Hosoya, T. Yamasaki. In SPCI International

Symposium of Wood and Pulping

Chemistry. Stockholm, 1981.

115 Chiang, V.L., M. Funaoka, The dissolution

and condensation-reactions of

guaiacyl and syringyl units in residual

lignin during kraft delignification of

sweetgum. Holzforschung, 1990; 44(2):

147–156.

116 Hartler, N., H. Norrstrom, Light-absorbing

properties of pulp and pulp components.

3. Kraft pulp. Tappi, 1969; 52(9):

1712–1715.

117 Gellerstedt, G., J. Pranda, E.L. Lindfors,

Structural and molecular-properties of

residual birch kraft lignins. J. Wood

Chem. Technol., 1994; 14(4): 467–482.

118 Johansson, E., S. Ljunggren, Nordic

Pulp Paper Res. J., 1990; 5(3): 148–154.

119 Ljunggren, S., E. Johansson, The

kinetics of lignin reactions during oxygen

bleaching. 3. The reactivity of

4-N-propylguaiacol and 4,4′-di-N-propyl-

6,6′-biguaiacol. Holzforschung, 1990;

44(4): 291–296.

120 Omori, S., C.W. Dence, The reactions of

alkaline hydrogen-peroxide with lignin

model dimers. 1. Phenacyl alpha-aryl

ethers. Wood Sci. Technol., 1981; 15(1):

67–79.

902 7Pulp Bleaching

121 Dence, C.W., A.J. Nonni. Technical

Papers. In International Symposium of

Wood and Pulping Chemistry. Vancouver,

1985.

122 Aoyagi, T., S. Hosoya, J. Nakano, A new

reaction site in lignin during O2-alkali

treatment. J. Japan Wood Res. Soc.

(Mokuzai Gakkaishi), 1979; 25(12):

783–788.

123 Oki, T., H. Ishikawa, K. Okubo, Oxidative

Degradation of Dihydrodehydrodiisoeugenol

and its methyl derivative by

peroxide and oxygen alkali methods.

J. Japan Wood Res. Soc. (Mokuzai

Gakkaishi), 1980; 26(7): 463–470.

124 Oki, T., H. Ishikawa, K. Okubo, On the

Influence of pH on molecular oxygen

and alkali degradation of guaiacylglycerol-

b-guaiacyl ether derivatives.

J. Japan Wood Res. Soc. (Mokuzai

Gakkaishi), 1976; 22(9): 518–525.

125 Halliwell, B., J.M.C. Gutteridge, Free

Radicals in Biology and Medicine. Third

edition. Oxford: Oxford University

Press, 2000: 936.

126 Broden, A., R. Simonson, Solubility of

oxygen. 2. Solubility of oxygen in

sodium hydrogen carbonate and

sodium-hydroxide solutions at temperatures

less-than-or-equal-to-150-degrees-

C and pressures less-than-or-equal-to-5

Mpa. Svensk. Papperstidn. – Nordisk Cellulosa,

1979; 82(16): 487–491.

127 Elstner, E.F., Der Sauerstoff. Mannheim:

BI Wissenschftsverlag, 1990: 529.

128 Barton, D.H.R., D.T. Sawyer. Introduction:

The dilemmas of O2 and HOOH

activation. In The Activation of Dioxygen

and Homogeneous Catalytic Oxidation.

Texas A&M University, College Station:

Plenum Press, 1993.

129 Gierer, J., The interplay between oxygen-

derived radical species in the

delignification during oxygen and

hydrogen peroxide bleaching. ACS Symposium

Series, 1999: 422–446.

130 Gierer, J., T. Reitberger, E.Q. Yang,

B.H. Yoon, Formation and involvement

of radicals in oxygen delignification

studied by the autoxidation of lignin

and carbohydrate model compounds.

J. Wood Chem. Technol., 2001; 21(4):

313–341.

131 Merenyi, G., J. Lind, M. Jonsson, Autoxidation

of closed-shell organics – an

outer-sphere electron-transfer. J. Am.

Chem. Soc., 1993; 115(11): 4945–4946.

132 Landucci, L.L., Electrochemical behavior

of catalysts for phenoxy radical generation.

Tappi, 1979; 62(4): 71–74.

133 Bielski, B.H.J., A.O. Allen, Mechanism

of disproportionation of superoxide radicals.

J. Phys. Chem., 1977; 81(11):

1048–1050.

134 Luo, Q.H., S.R. Zhu, M.C. Shen,

J. Wang, A pulse-radiolysis study of catalytic

dismutation of superoxide anion by

copper(II) complex of biscyclam dioxotetraamine.

Radiat. Physics Chem., 1995;

45(2): 247–250.

135 Belloni, J., A. Lecheheb, Heterogeneous

catalysis of superoxide anion dismutation.

Radiat. Physics Chem., 1987; 29(2):

89–92.

136 Bielski, B.H.J., D.E. Cabelli, R.L. Arudi,

A.B. Ross, Reactivity of HO2/O2-radicals

in aqueous solution. J. Phys. Chem. Ref.

Data, 1985; 14(4): 1041–1100.

137 Starnes Jr., W.H., Mechanisms of autoxidation

in neutral or alkaline media. In

First International Symposium on

Delignification with Oxygen Ozone and

Peroxides. Raleigh, North Carolina,

USA: North Caroline State University,

1975.

138 Gierer, J., F. Imsgard, The reactions of

lignin with oxygen and hydrogen peroxide

in alkaline media. In First International

Symposium on Delignification

with Oxygen Ozone and Peroxides.

Raleigh, North Carolina, USA: North

Caroline State University, 1975.

139 Legrini, O., E. Oliveros, A.M. Braun,

Photochemical processes for water-treatment.

Chem. Rev., 1993; 93(2): 671–698.

140 Machado, A.E.d.H., R. Ruggiero,

M.G. Neumann, The photodegradation

of lignins in the presence of hydrogen

peroxide. J. Photochem. Photobiol. A:

Chemistry, 1994; 81(2): 107–115.

141 Ruggiero, R., A.E.H. Machado,

A. Castellan, S. Grelier, Photoreactivity

of lignin model compounds in the

photobleaching of chemical pulps.

1. Irradiation of 1-(3,4-dimethoxyphenyl)-

2-(3′-methoxyphenoxy)-1,3-dihydroxypropane

in the presence of singlet

References 903

oxygen sensitizer or hydrogen peroxide

in basic methanol solution. J. Photochem.

Photobiol. A: Chemistry, 1997;

110(1): 91–97.

142 Qiu, Y., Z. Zheng, Y. Zhou, R. Deng,

Z. Dou, Study on singlet oxygen-reinforced

oxygen bleaching of soda-AQ

wheat straw pulp. Zhongguo Zaozhi Xuebao/

Trans. China Pulp Paper, 1997:

40–46.

143 Duarte, A.P., D. Lachenal, Hydrogen

peroxide production during oxygen

bleaching of Eucalyptus globulus kraft

pulp – origin of cellulose degradation.

Pap. Puu, 2002; 84(4): 275–277.

144 Buda, F., B. Ensing, M.C.M. Gribnau,

E.J. Baerends, DFTstudy of the active

intermediate in the Fenton reaction.

Chemistry – AEuropean Journal, 2001;

7(13): 2775–2783.

145 Reitberger, T., J. Gierer, E. Yang,

B.-H. Yoon, Involvement of oxygen-derived

free radicals in chemical and biochemical

degradation of lignin. In Oxidative

Delignification Chemistry,

D.S. Argyropoulos, Ed. American

Chemical Society, Oxford University

Press: Washington, DC, 2001: 255–271.

146 Chang, H.-M., J.S. Gratzl, Ring cleavage

reactions of lignin models with oxygen

and alkali. In First International Symposium

on Delignification with Oxygen

Ozone and Peroxides. Raleigh, North

Carolina, USA: North Caroline State

University, 1975.

147 Aoyagi, T., S. Hosoya, J. Nakano, A new

reaction site in lignin during O2-alkali

treatment. In First International Symposium

on Delignification with Oxygen

Ozone and Peroxides. Raleigh, North

Carolina, USA: North Caroline State

University, 1975.

148 Nilvebrant, N.O., J. Gierer, Oxygen and

hydrogen-peroxide as bleaching

reagents, their selectivity and cooperation

in lignin degradation. Abstracts,

Papers Am. Chem. Soc., 1987; 193: 15.

149 Ek, M., J. Gierer, K. Jansbo, Study on

the selectivity of bleaching with oxygencontaining

species. Holzforschung, 1989;

43(6): 391–396.

150 Belgacem, M.N., D.V. Evtuguin,

I. Deineko, Influence of the base nature

on the lignin reactivity and oxidation

selectivity during oxygen delignification

of Picea excelsa. Cellulose Chem. Technol.,

2002; 36(3–4): 327–338.

151 Chen, S.L., L.A. Lucia, Fundamental

insight into the mechanism of oxygen

delignification of kraft pulps. II. Application

of surfactants. Cellulose Chem.

Technol., 2002; 36(5–6): 495–505.

152 Chen, S.L., L.A. Lucia, Fundamental

insight into the mechanism of oxygen

delignification of kraft pulps: The influence

of a novel carbohydrate protective

system. Cellulose Chem. Technol., 2002;

36(3–4): 339–351.

153 Van Heiningen, A., S. Violette, Selectivity

improvement during oxygen delignification

by adsorption of a sugar-basedpolymer.

J. Pulp Paper Sci., 2003; 29(2):

48–53.

154 Gibson, A., M. Wajer, The use of magnesium

hydroxide as an alkali and cellulose

protector in chemical pulp bleaching.

Pulp Paper Can., 2003; 104(11):

28–32.

155 Gevert, B.S., S.F. Lohmander, Influence

of sulfur compounds, manganese, and

magnesium on oxygen bleaching of

kraft pulp. Tappi J., 1997: 263–268.

156 Lucia, L.A., R.S. Smereck, Effect of lignin

content and magnesium-to-manganese

ratio on the selectivity of oxygen

delignification in softwood kraft pulp.

Pure Appl. Chem., 2001; 73(12):

2059–2065.

157 Argyropoulos, D.S., Oxidative delignification

chemistry. Fundamentals and catalysis.

ACS Symposium Series 785.

Washington, DC: American Chemical

Society, 2001: 533.

158 Beyer, M., C. Baurich, K. Fischer, Mechanisms

of light and heat-induced discoloration

of pulps. Papier, 1995; 49(10A):

V8–V14.

159 Crestini, C., M. Dauria, Photodegradation

of lignin: The role of singlet oxygen.

J. Photochem. Photobiol. A. Chemistry,

1996; 101(1): 69–73.

160 Machado, A.E.D., R. Ruggiero,

M.G.H. Terrones, A. Nourmamode,

S. Grelier, A. Castellan, Photodelignification

of Eucalyptus grandis organosolv

chemical pulp. J. Photochem. Photobiol.

A. Chemistry, 1996; 94(2–3): 253–262.

904 7Pulp Bleaching

161 Wang, J., G. Heitner, R.J. Manley, The

photodegradation of milled-wood lignin.

2. The effect of inhibitors. J. Pulp Paper

Sci., 1996; 22(2): J58–J63.

162 Crestini, C., M. Dauria, Singlet oxygen

in the photodegradation of lignin models.

Tetrahedron, 1997; 53(23):

7877–7888.

163 Machado, A.E.H., A.J. Gomes,

C.M.F. Campos, M.G.H. Terrones,

D.S. Perez, R. Ruggiero, A. Castellan,

Photoreactivity of lignin model compounds

in the photobleaching of chemical

pulps. 2. Study of the degradation of

4-hydroxy-3-methoxy-benzaldehyde and

two lignin fragments induced by singlet

oxygen. J. Photochem. Photobiol. A.

Chemistry, 1997; 110(1): 99–106.

164 Barclay, L.R.C., J.K. Grandy,

H.D. MacKinnon, H.C. Nichol,

M.R. Vinqvist, Peroxidations initiated by

lignin model compounds: investigating

the role of singlet oxygen in photo-yellowing.

Can. J. Chem. – Rev. Canadienne

De Chimie, 1998; 76(12): 1805–1816.

165 Bonini, C., M. D’Auria, G. Mauriello,

D. Viggiano, F. Zimbardi, Singlet oxygen

degradation of lignin in the pulp.

J. Photochem. Photobiol. A. Chemistry,

1998; 118(2): 107–110.

166 Bonini, C., M. D’Auria, L. D’Alessio,

G. Mauriello, D. Tofani, D. Viggiano,

F. Zimbardi, Singlet oxygen degradation

of lignin. J. Photochem. Photobiol. A.

Chemistry, 1998; 113(2): 119–124.

167 Bentivenga, G., C. Bonini, M. D’Auria,

A. De Bona, Singlet oxygen degradation

of lignin: a GC-MS study on the residual

products of the singlet oxygen degradation

of a steam exploded lignin from

beech. J. Photochem. Photobiol. A. Chemistry,

1999; 128(1–3): 139–143.

168 Bentivenga, G., C. Bonini, M. D’Auria,

A. De Bona, G. Mauriello, Singlet oxygen

mediated degradation of Klason lignin.

Chemosphere, 1999; 39(14):

2409–2417.

169 Castellan, A., D. Da Silva Perez,

A. Nourmamode, S. Grelier,

M.G.H. Terrones, A.E.H. Machado,

R. Ruggiero, The improvement of the

bleaching of peroxyformic sugar cane

bagasse pulp by photocatalysis and

photosensitization. J. Brazil. Chem. Soc.,

1999: 197–202.

170 Bentivenga, G., C. Bonini, M. D’Auria,

A. De Bona, G. Mauriello, Fine chemicals

from singlet-oxygen-mediated degradation

of lignin – a GC/MS study at

different irradiation times on a steamexploded

lignin. J. Photochem. Photobiol.

A. Chemistry, 2000; 135(2–3): 203–206.

171 Lanzalunga, O., M. Bietti, Photo- and radiation

chemical induced degradation of

lignin model compounds. J. Photochem.

Photobiol. B. Biology, 2000; 56: 85–108.

172 Araujo, E., A.J. Rodriguez-Malaver,

A.M. Gonzalez, O.J. Rojas, N. Penaloza,

J. Bullon, M.A. Lara, N. Dmitrieva, Fenton’s

reagent-mediated degradation of

residual Kraft black liquor. Appl. Biochem.

Biotechnol., 2002; 97(2): 91–103.

173 Bonini, C., A. Carbone, M. D’Auria, Singlet

oxygen mediated degradation of lignin

– a kinetic study. Photochem. Photobiol.

Sci., 2002; 1(6): 407–411.

174 Bonini, C., M. D’Auria, R. Ferri, Singlet

oxygen mediated degradation of lignin –

isolation of oxidation products from

steam-exploded lignin from pine. Photochem.

Photobiol. Sci., 2002; 1(8):

570–573.

175 Da Silva Perez, D., A. Castellan,

A. Nourmamode, S. Grelier,

R. Ruggiero, A.E.H. Machado, Photosensitized

delignification of residual lignin

and chemical pulp from Eucalyptus

grandis wood. Holzforschung, 2002;

56(6): 595–600.

176 D’Auria, M., C. Bonini, L. Emanuele,

R. Ferri, Singlet oxygen-mediated degradation

of lignin – Isolation of oxidation

products from steam-exploded lignin

from straw. J. Photochem. Photobiol. A.

Chemistry, 2002. 147(2): 153–156.

177 Perez, D.D., A. Castellan,

A. Nourmamode, S. Grelier,

R. Ruggiero, A.E.H. Machado, Photosensitized

delignification of residual lignin

and chemical pulp from Eucalyptus

grandis wood. Holzforschung, 2002;

56(6): 595–600.

178 D’Auria, M., R. Ferri, Frontier orbitals

control in the reactivity of singlet oxygen

with lignin model compounds – An

ab initio study. J. Photochem. Photobiol.

A. Chemistry, 2003; 157(1): 1–4.

References 905

179 Hwang, K.-O., L.A. Lucia, Fundamental

insights into the oxidation of lignocellulosics

obtained from singlet oxygen

photochemistry. J. Photochem. Photobiol.

A. Chemistry, 2004; 168: 205–209.

180 Reale, S., A. Di Tullio, N. Spreti,

F. De Angelis, Mass spectrometry in the

biosynthetic and structural investigation

of lignins. Mass Spectrom. Rev., 2004;

23(2): 87–126.

181 Chupka, E.I., V.V. Vershal, Role of singlet

oxygen during lignin oxidation in

alkali solutions. Khimiya Prirodnykh Soedinenii,

1986(1): 121–122.

182 Lucia, L.A., M.M. Goodell, F.S. Chakar,

A.J. Ragauskas, Breaking the oxygen

delignification barrier: lignin reactivity

and inactivity. In Oxidative Delignification

Chemistry, D.S. Argyropoulos, Ed.

American Chemical Society, Oxford

University Press:Washington, DC,

2001: 92–107.

183 Malinen, R., Behavior of wood polysaccharides

during oxygen-alkali delignification.

Papper och Tra, 1975; 4a:

193–204.

184 Samuelson, O., L. Stolpe, Aldonic acid

end groups in cellulose after oxygen

bleaching. I. Model experiments with

hydrocellulose. Tappi, 1969; 52(9):

1709–1711.

185 Theander, O., Carbohydrate reactions in

oxygen-alkali delignification processes.

In First International Symposium on

Delignification with Oxygen Ozone and

Peroxides. Raleigh, North Carolina,

USA: North Caroline State University,

1975.

186 Lewin, M., Oxidation and aging of cellulose.

Macromol. Symp., 1997; 118:

715–724.

187 Ericsson, B., B.O. Lindgren,

O. Theander, Degradation of cellulose

during oxygen bleaching. oxidation and

alkaline treatment of d-glucosone. Cellulose

Chem. Technol., 1973; 7: 581–591.

188 Samuelson, O., Degradation of cellulose

in different bleaching processes. Das

Papier, 1970; 24(10A): 671.

189 Lindberg, B., O. Theander, Reactions between

D-glucosone and alkali. Acta

Chim. Scand., 1968; 22: 1782–1786.

190 Malinen, R., E. Sjostrom, Studies on the

reactions of carbohydrates during oxygen

bleaching. Part I. Oxidative alkaline

degradation of cellobiose. Papper och

Tra, 1972; 54: 451–468.

191 Samuelson, O., L. Thede, Identification

of carboxyl groups in cellulose after

aging as alkali cellulose. Tappi, 1969; 52:

99–104.

192 Malinen, R., E. Sjostrom, Studies on the

reactions of carbohydrates during oxygen

bleaching. Part III. Degradation of

cello-oligosaccharides and hydrocellulose.

Papper och Tra, 1973; 55: 547–556.

193 Malinen, R., E. Sjostrom, Studies on the

reactions of carbohydrates during oxygen

bleaching. Part IV. Degradation of

manno-oligosaccharides and mannan.

Papper och Tra, 1974; 56: 895.

194 Malinen, R., E. Sjostrom, Studies on the

reactions of carbohydrates during oxygen

bleaching. Part V. Degradation of

xylose, xylo-oligosaccharides and birch

xylan. Papper och Tra, 1975; 57: 101–114.

195 Kolmodin, H., O. Samuelson, Oxygenalkali

treatment of hemicellulose.

2. Experiments with birch xylan. Svensk.

Papperstidn., 1973; 76(2): 71–77.

196 Jacobs, A., P.T. Larsson, O. Dahlman,

Distribution of uronic acids in xylans

from various species of soft- and hardwood

as determined by MALDI mass

spectrometry. Biomacromolecules, 2001;

2: 979–990.

197 Aurell, R., N. Hartler, G. Persson, Alkali

stability of 2-O-(4-O-methyl-alpha-Dxylopyranosyluronic

acid)-D-xylopyranose.

Acta Chim. Scand., 1963; 17(2):

545.

198 Aspinall, G.O., R.J. Sturgeon,

C.T. Greenwood, Degradation of xylans

by alkali. J. Chem. Soc., 1961: 3667.

199 Malinen, R., E. Sjostrom, J. Ylijoki,

Studies on the reactions of carbohydrates

during oxygen bleaching. Part II.

Degradation of aldonic and glucosylaldonic

acids. Papper och Tra, 1973; 55: 5.

200 Ericsson, B., R. Malinen, Oxygen and

hydrogen peroxide oxidation of methyl

4-O-methyl-b-D-glucopyranoside in

alkaline solution. Cellulose Chem. Technol.,

1974; 8: 327–338.

201 Ericsson, B., B.O. Lindgren,

O. Theander, Formation of methyl 2-carboxy-

beta-D-pentofuranosides by oxidation

of methyl beta-D-glucopyranoside

906 7Pulp Bleaching

with oxygen in alkaline, aqueous solution.

Carbohydrate Res., 1972; 23:

323–325.

202 Guay, D.F., B.J.W. Cole, J.R.C. Fort,

J.M. Genco, M.C. Hausman, Mechanisms

of oxidative degradation of carbohydrates

during oxygen delignification.

I. Reaction of methyl b-D-glucopyranoside

with photochemically generated hydroxyl

radicals. J. Wood Chem. Technol.,

2000: 375–394.

203 Yokoyama, T., Y. Matsumoto,

G. Meshitsuka, Enhancement of the

reaction between pulp components and

hydroxyl radical produced by the decomposition

of hydrogen peroxide under

alkaline conditions. J. Wood Sci., 2002;

48(3): 191–196.

204 Guay, D.F., B.J.W. Cole, R.C. Fort,

M.C. Hausman, J.M. Genco, T.J. Elder,

K.R. Overly, Mechanisms of oxidative

degradation of carbohydrates during

oxygen delignification. II. Reaction of

photochemically generated hydroxyl

radicals with methyl beta-cellobioside.

J. Wood Chem. Technol., 2001; 21(1):

67–79.

205 Kolmodin, H., Treatment of ethyl

4-O-methyl-b-D-glycopyranosides with

oxygen-alkali. Carbohydrate Res., 1974;

34(2): 227–232.

206 McCloskey, J.T., L.R. Schroeder,

J.D. Sinkey, N.S. Thompson, Degradation

of methyl beta-D-glucopyranoside

by oxygen in alkaline-solutions. Pap.

Puu, 1975; 57(3): 131.

207 Ericsson, B., J. Kolar, B.O. Lindgren,

R. Malinen, O. Theander, Carbohydrate

reactions in oxygen-alkali delignification

– oxidation of methyl-beta-D-glucopyranoside,

methyl-4-O-methyl-beta-D-glucopyranoside

and methyl-beta-D-xyloside.

Abstracts, Papers Am. Chem. Soc.,

1974: 41–41.

208 Samuelson, O., L. Stolpe, Degradation

of carbohydrates during oxygen bleaching.

1. Cellobitol as a model substance.

Svensk. Papperstidn., 1969; 20: 662–666.

209 Sinkey, J.D., N.S. Thompson, Function

of magnesium compounds in an oxygen-

alkali-carbohydrate system. Pap.

Puu, 1974; 56(5): 473.

210 De Souza, I.J., J. Bouchard, M. Methot,

R. Berry, D.S. Argyropoulos, Carbohydrates

in oxygen delignification. Part I:

Changes in cellulose crystallinity. J.

Pulp Paper Sci., 2002; 28(5): 167–170.

211 Guay, D.F., B.J.W. Cole, R.C. Fort,

M.C. Hausman, J.M. Genco, T.J. Elder,

Mechanisms of oxidative degradation of

carbohydrates during oxygen delignification.

Part III: Reaction of photochemically

generated hydroxyl radicals with

1,5-anhydrocellobitol and cellulose.

J. Pulp Paper Sci., 2002; 28(7): 217–221.

212 Sun, Y.P., A.F.A. Wallis, K.L. Nguyen,

Reactivity of lignin and lignin models

towards UV-assisted peroxide. J. Wood

Chem. Technol., 1997; 17(1–2): 163–178.

213 Buxton, G.V., C.L. Greenstock,

W.P. Helman, A.B. Ross, Critical review

of rate constants for reactions of

hydrated electrons, hydrogen-atoms and

hydroxyl radicals (_OH/_O–) in aqueous

solution. J. Phys. Chem. Ref. Data, 1988;

17(2): 513–886.

214 Malinen, R., E. Sjostrom, Oxygen-alkali

oxidation of methyl glycosides. Cellulose

Chem. Technol., 1975; 9: 231–238.

215 Lowendahl, L., G. Petersson,

O. Samuelson, Formation of dicarboxylic

acids from 4-O-methyl-D-glucuronic

acid in alkaline solution in the

presence and absence of oxygen. Carbohydrate

Res., 1975; 43(2): 355–359.

216 Lind, J., G. Merenyi, N.O. Nilvebrant,

Hydroxyl radical induced viscosity loss

in cellulose fibres. J. Wood Chem. Technol.,

1997; 17(1–2): 111–117.

217 Schuchmann, M.N., C.V. Sonntag, Radiation-

chemistry of carbohydrates. 14.

Hydroxyl radical induced oxidation of

D-glucose in oxygenated aqueous-solution.

J. Chem. Soc. -Perkin Trans. 2, 1977

(14): 1958–1963.

218 Tronchet, J.M., A. Cier, C. Nofre, M.A.

Ravier, Chimie organique – action du

radical libre hydroxyle sur le D-ribose.

Comptes Rendus Hebdomadaires Des

Seances De l’Academie Des Sciences, 1963;

256(11): 2433.

219 Belder, A.N.D., B. Lindberg,

O. Theander, Oxidation of glycosides.

13. Oxidation of methyl beta-D-glucopyranoside

with Fenton’s reagent. Acta

Chim. Scand., 1963; 17(4): 1012.

220 Gilbert, B.C., D.M. King, C.B. Thomas,

Radical reactions of carbohydrates.

References 907

4. Electron-spin resonance studies of

radical-induced oxidation of some aldopentoses,

sucrose, and compounds containing

furanose rings. J. Chem. Soc. –

Perkin Trans. 2, 1983 (5): 675–683.

221 Gilbert, B.C., D.M. King, C.B. Thomas,

Radical reactions of carbohydrates. 3. An

electron-spin resonance investigation of

base-catalyzed rearrangements of radicals

derived from deuterium-glucose

and related-compounds. J. Chem. Soc. –

Perkin Trans. 2, 1982 (2): 169–179.

222 Gilbert, B.C., D.M. King, C.B. Thomas,

Radical reactions of carbohydrates.

5. The oxidation of some polysaccharides

by the hydroxyl radical – an electron-

spin-resonance investigation. Carbohydrate

Res., 1984; 125(2): 217–235.

223 Gilbert, B.C., D.M. King, C.B. Thomas,

Radical reactions of carbohydrates. 2. An

electron-spin resonance study of the oxidation

of D-glucose and related-compounds

with the hydroxyl radical.

J. Chem. Soc. – Perkin Trans. 2, 1981 (8):

1186–1199.

224 McGrouther, K.G., I.D. Suckling,

R.W. Allison, D. Lachenal, Carbohydrate

degradation during oxygen delignification.

A model study of the role of transition

metals, lignin models and glucose.

International Pulp Bleaching Conference:

Poster Presentations, 2000: 31–36.

225 Morelli, R., S. Russo-Volpe, N. Bruno,

R. Lo Scalzo, Fenton-dependent damage

to carbohydrates: Free radical scavenging

activity of some simple sugars.

J. Agric. Food Chem., 2003; 51(25):

7418–7425.

226 Stenman, D., M. Carlsson, T. Reitberger,

Peroxynitrite mediated delignification of

pulp: A comparative study on the

bleaching properties of the carbonate

and hydroxyl radicals. J. Wood Chem.

Technol., 2004; 24(2): 83–98.

227 Roots, R., S. Okada, Estimation of life

times and diffusion distances of radicals

involved in X-ray-induced DNA strand

breaks or killing of mammalian cells.

Radiat. Res., 1975; 64(2): 306–320.

228 Yanagida, H., Y. Masubuchi,

K. Minagawa, T. Ogata, J. Takimoto,

K. Koyama, A reaction kinetics model of

water sonolysis in the presence of a

spin-trap. Ultrason. Sonochem., 1999;

5(4): 133–139.

229 Li, B.B., P.L. Gutierrez, N.V. Blough,

Trace determination of hydroxyl radical

in biological systems. Anal. Chem.,

1997; 69(21): 4295–4302.

230 Takeda, K., H. Takedoi, S. Yamaji,

K. Ohta, H. Sakugawa, Determination

of hydroxyl radical photoproduction

rates in natural waters. Anal. Sci., 2004;

20(1): 153–158.

231 Ohashi, Y., H. Yoshioka, H. Yoshioka,

Detection of 2-deoxy-D-ribose radicals

generated by the reaction with the hydroxyl

radical using a rapid flow-ESR

method. Biosci. Biotechnol. Biochem.,

2002; 66(4): 847–852.

232 Biaglow, J.E., Y. Manevich, F. Uckun,

K.D. Held, Quantitation of hydroxyl radicals

produced by radiation and copperlinked

oxidation of ascorbate by 2-deoxy-

D-ribose method. Free Radical Biol.

Med., 1997; 22(7): 1129–1138.

233 Manevich, Y., K.D. Held, J.E. Biaglow,

Coumarin-3-carboxylic acid as a detector

for hydroxyl radicals generated chemically

and by gamma radiation. Radiat.

Res., 1997; 148(6): 580–591.

234 Yang, X.F., X.Q. Guo, Study of nitroxide-

linked naphthalene as a fluorescence

probe for hydroxyl radicals. Anal.

Chim. Acta, 2001; 434(2): 169–177.

235 Tai, C., X.X. Gu, H. Zou, Q.H. Guo, A

new simple and sensitive fluorometric

method for the determination of hydroxyl

radical and its application.

Talanta, 2002; 58(4): 661–667.

236 Tornberg, K., S. Olsson, Detection of hydroxyl

radicals produced by wooddecomposing

fungi. FEMS Microbiol.

Ecol., 2002; 40(1): 13–20.

237 King, M., R. Kopelman, Development of

a hydroxyl radical ratiometric nanoprobe.

Sensors and Actuators B – Chemical,

2003; 90(1–3): 76–81.

238 Vasquez-Vivar, J., J. Joseph, H. Karoui,

H. Zhang, J. Miller, P. Martasek, EPR

spin trapping of superoxide from nitric

oxide synthase. Analusis, 2000; 28(6):

487–492.

239 Ge, B., F. Lisdat, Superoxide sensor

based on cytochrome c immobilized on

mixed-thiol SAM with a new calibration

908 7Pulp Bleaching

method. Anal. Chim. Acta, 2002; 454(1):

53–64.

240 Farmer, P.J., W. Liu, Cyt c modified electrodes

for superoxide detection. Free

Radical Biol. Med., 2002; 33: S424–S424.

241 Lvovich, V., A. Scheeline, Amperometric

sensors for simultaneous superoxide

and hydrogen peroxide detection. Anal.

Chem., 1997; 69(3): 454–462.

242 Tarpey, M.M., I. Fridovich,Methods of

detection of vascular reactive species.

Nitric oxide, superoxide, hydrogen peroxide,

and peroxynitrite. Circ. Res., 2001;

89(11): 224–236.

243 Afanas’ev, I.B., Lucigenin chemiluminescence

assay for superoxide detection.

Circ. Res., 2001; 89(11): E46–E46.

244 Kocˇar, D., M. Strlicˇ, J. Kolar, B. Pihlar, A

new method for determination of hydroperoxides

in cellulose. Anal. Bioanal.

Chem., 2002; 374(7–8): 1218–1222.

245 Kolar, J., M. Strlicˇ, B. Pihlar, New colorimetric

method for determination of hydroxyl

radicals during ageing of cellulose.

Anal. Chim. Acta, 2001; 431(2):

313–319.

246 Sjostrom, E., O. Valttila, Inhibition of

carbohydrate degradation during oxygen

bleaching. 1. Comparison of various

additives. Pap. Puu, 1972; 54(11): 695.

247 Laine, C., T. Tamminen, Origin of carbohydrates

dissolved during oxygen

delignification of birch and pine kraft

pulp. Nordic Pulp Paper Res. J., 2002;

17(2): 168–171.

248 Laine, C., T. Tamminen, A. Vikkula,

T. Vuorinen, Methylation analysis as a

tool for structural analysis of wood polysaccharides.

Holzforschung, 2002; 56(6):

607–614.

249 Gustavsson, R., B. Swan, Evaluation of

the degradation of cellulose and delignification

during oxygen bleaching. Tappi,

1975; 58: 120–123.

250 Nunn, J.R., M.J.v.d. Linde. The protective

action of magnesium in oxygen

bleaching of pulp. Part 1: The complexing

of methyl-alpha-D-glucopyranoside

with magnesium ions. In First International

Symposium on Delignification

with Oxygen Ozone and Peroxides.

Raleigh, North Carolina, USA: North

Caroline State University, 1975.

251 Abbot, J., D.G. Brown, G.C. Hobbs,

I.J. Jewell, P.J. Wright, The influence of

manganese and magnesium on alkaline

peroxide bleaching of radiata pine thermomechanical

pulp. Appita J., 1992;

45(2): 109.

252 Elashmawy, A.E., S.O. Heikal,

M.H. Fadl, Effect of magnesium salts

on soda-oxygen bleaching of kraft

bagasse pulp. Research and Industry,

1983; 28(2): 130–132.

253 Brown, D.G., and J. Abbot, Magnesium

as a stabilizer for peroxide bleaching of

mechanical pulp. Appita J., 1994; 47(3):

211–216.

254 Ni, Y.H., A.R.P. Van Heiningen,

G.J. Kang, A. Humphrey, R.W. Thring,

A. Skothos, Improved oxygen delignification

for magnesium-based sulfite

pulps. Tappi J., 1998; 81(10): 165–169.

255 Samuelson, O., U. Ojteg, Influence of

manganese and magnesium on oxygen

bleaching in carbonate media after a

nitrogen dioxide pretreatment. Holzforschung,

1996; 50(4): 379–385.

256 Samuelson, O., U. Ojteg, Influence of

magnesium during oxygen bleaching in

the presence of manganese. Cellulose

Chem. Technol., 1995; 29(1): 55–63.

257 Liden, J., L.O. Ohman, Redox stabilization

of iron and manganese in the +II

oxidation state by magnesium precipitates

and some anionic polymers. Implications

for the use of oxygen-based

bleaching chemicals. J. Pulp Paper Sci.,

1997; 23(5): J193–J199.

258 Wiklund, L., L.O. Ohman, J. Liden,

Solid solution formation between

Mn(II) and Mg(II) hydroxides in alkaline

aqueous solution. Nordic Pulp Paper

Res. J., 2001; 16(3): 240–245.

259 Wiklund, L., L.-O. Ohman, J. Liden, Surface

precipitation of MgCO3 on MnCO3

in aqueous solution at 90 °C. Nordic

Pulp Paper Res. J., 2001; 16: 339–345.

260 Landucci, L.L., Effects of transition metals

in oxidative delignification. In First

International Symposium on Delignification

with Oxygen Ozone and Peroxides.

Raleigh, North Carolina, USA:

North Caroline State University, 1975.

261 Sun, Y., M. Fenster, A. Yu, R.M. Berry,

D.S. Argyropoulos, The effect of metal

ions on the reaction of hydrogen peroxReferences

909

ide with Kraft lignin model compounds.

Can. J. Chem.- Rev. Canadienne De Chimie,

1999; 77(5–6): 667–675.

262 Rodriguez, S.K., K.L. Wilson,

R.C. Francis, Effect of adsorbed transition

metals on hydrogen peroxide

bleaching of thermomechanical pulp.

Annual Meeting – Technical Section,

Canadian Pulp and Paper Association,

Preprints, 1996.

263 Rasanen, E., L. Karkkainen, Modelling

of complexation of metal ions in pulp

suspensions. J. Pulp Paper Sci., 2003;

29(6): 196–203.

264 Lapierre, L., R. Berry, J. Bouchard, The

effect of magnesium ions and chelants

on peroxide bleaching. Holzforschung,

2003; 57(6): 627–633.

265 Moreira, M.T., G. Feijoo, J. Canaval,

J.M. Lema, Semipilot-scale bleaching of

Kraft pulp with manganese peroxide.

Wood Sci. Technol., 2003; 37(2): 117–123.

266 Wekesa, M., Y. Ni, Stabilization of peroxide

systems by silicate and calcium carbonate

and its application to bleaching

of recycled fibres. Pulp Paper Can., 2003;

104(12): 85–87.

267 Qiu, Z., Y. Ni, Improving peroxide

bleaching by decreasing manganese

induced peroxide decomposition. International

Pulp Bleaching Conference:

Poster Presentations, 2000: 139–154.

268 Ni, Y.H., Z.P. Qiu, Methods to decrease

manganese-induced decomposition of

peroxide. Appita J., 2003; 56(5):

355–358.

269 Kishimoto, T., F. Nakatsubo, Non-chlorine

bleaching of kraft pulp – IV. Oxidation

of methyl 4-O-ethyl-beta-D-glucopyranoside

with Fenton’s reagent:

Effects of pH and oxygen. Holzforschung,

1998; 52(2): 180–184.

270 Yokoyama, T., Y. Matsumoto,

G. Meshitsuka, The role of peroxide species

in carbohydrate degradation during

oxygen bleaching. Part III: Effect of

metal ions on the reaction selectivity between

lignin and carbohydrate model

compounds. J. Pulp Paper Sci., 1999;

25(2): 42–46.

271 Wekesa, M., Y.H. Ni, Further understanding

of the chemistry of manganese-

induced peroxide decomposition.

Can. J. Chem. Eng., 2003; 81(5):

968–972.

272 Gartner, A., G. Gellerstedt, Oxidation of

residual lignin with alkaline hydrogen

peroxide. Part II: Elimination of chromophoric

groups. J. Pulp Paper Sci.,

2001; 27(7): 244–248.

Sections 7.3.3–7.3.8

1 Olm, L., A. Teder, The kinetics of oxygen

bleaching. Tappi, 1979; 62(12):

43–46.

2 Myers, M.R., L.L. Edwards, Development

and verification of a predictive

oxygen delignification model for hardwood

and softwood kraft pulp. Tappi J.,

1989; 72(9): 215–219.

3 Agarwal, S.B., et al., Kinetics of oxygen

delignification. J. Pulp Paper Sci., 1999;

25(10): 361–366.

4 Avrami, M., Kinetics of phase change II

– transformation-time relations for random

distribution of nuclei. J. Chem.

Phys., 1940; 8: 212–224.

5 Valchev, I., E. Valchev, E. Christova,

Kinetics of oxygen delignification of

hardwood kraft pulp. Cellulose Chem.

Technol., 1999; 33: 303–310.

6 Macleod, J.M., J. Li, Alkaline leaching of

kraft pulps for lignin removal. In TAPPI

Pulping Conference, 1992.

7 Ackert, J.E., D.D. Koch, L.L. Edwards,

Displacement chlorination of kraft

pulps – an experimental study and comparison

of models. Tappi, 1975; 58(10):

141–145.

8 Edwards, L., S. Norberg, Tappi, 1973;

56(11): 108–111.

9 Hsu, C.L., J.S. Hsieh, Oxygen bleaching

kinetics at ultra-low consistency. Tappi

J., 1987: 107–111.

10 Hsu, C.L., J.S. Hsieh, Reaction kinetics

in oxygen bleaching. AIChE J., 1988;

34(1): 116–122.

11 Iribarne, J., L.R. Schroeder, High pressure

oxygen delignification of kraft

pulps I – Kinetics. Tappi Proceedings –

Pulping Conference, 1995: 125–133.

12 Iribarne, J., L.R. Schroeder, High-pressure

oxygen delignification of kraft

910 7Pulp Bleaching

pulps. Part I: kinetics. Tappi J., 1997;

80(10): 241–250.

13 Vincent, A.H.D., K.L. Nguyen,

J.F. Mathews, Kinetics of oxygen

delignification of eucalypt kraft pulp.

Appita, 1994; 47(3): 217–220.

14 Zou, H., et al., Influence of kraft pulping

on the kinetics of oxygen delignification.

Tappi, 2000; 83(2): 65–71.

15 Axegard, P., S. Moldenius, L. Olm,

Basic chemical kinetics equations are

useful for understanding of pulping

processes. Svensk. Papperstidn., 1979;

82(5): 131–136.

16 Schoon, N.H., Interpretation of rate

equation for kinetic studies of wood

pulping and bleaching. Svensk. Papperstidn.,

1982: R185–R193.

17 Nguyen, K.L., H. Liang, Kinetic model

of oxygen delignification. Part 1– effect

of process variables. Appita J., 2002;

55(2): 162–165.

18 Quillin, D.T., et al., Crystallinity in the

polypropylene/cellulose system – crystallization

kinetics. J. Appl. Polym. Sci.,

1994; 52: 605.

19 Agarwal, S.B., et al., Kinetics of oxygen

delignification. J. Pulp Paper Sci., 1999;

25(10): 361–366.

20 Jarrehult, B., Oxygen-alkali treatment of

kraft pulp and cellobitol. In Institutionen

for Teknisk Kemi. PhD-Thesis,

Chalmers Tekniska Hogskola: Goteborg,

1992.

21 Jarrehult, B., O. Samuelson, Oxygen

bleaching of kraft pulps at low consistency.

Svensk. Papperstidn., 1978; 81 :

533–540.

22 Ekenstam, A., Uber das Verhalten der

Cellulose in Mineralsaure-Losungen, II.

Mitteilung: Kinetisches Studium des

Abbaus der Cellulose in Saurelosungen.

Ber. Dtsch. Chem. Ges., 1936; 69:

553–559.

23 Godsay, M.P., E.M. Pearce, Physicochemical

properties of ozone oxidized

kraft pulps. In Tappi Symposium – Oxygen

Delignification, 1984.

24 Immergut, E.H., B.G. Ranby, H.F.

Mark, Molecular weight of cellulose.

Journal of Industrial and Engineering

Chemistry, 1953; 45: 2483–2490.

25 Schelosky, N., T. Roder, T. Baldinger,

Molmassenverteilung cellulosischer

Produkte mittels Grossenausschlu.chromatographie

in DMAc/LiCl.

Papier, 1999; 53(12): 728–738.

26 Chen, S.-L., L.A. Lucia, Fundamental

insight into the mechanism of oxygen

delignification of kraft pulps. II. Application

of surfactants. Cellulose Chem.

Technol., 2002; 36(5–6): 495–505.

27 Heiningen, A.V., et al., A chemical reactor

analysis of industrial oxygen delignification.

Pulp Paper Can., 2003; 104(12):

T331–T336.

28 Rewatkar, V.B., V.P.J. Bennington, Gasliquid

mass transfer in pulp retention

towers. In TAPPI International Pulp

Bleaching Conference, 2002.

29 Rewatkar, V.B., V.P.J. Bennington, Gasliquid

mass transfer in low and medium

consistency pulp suspensions. Can. J.

Chem. Eng., 2000; 78: 504–512.

30 Broden, A., R. Simonson, Solubility of

oxygen. Part 2. Solubility of oxygen in

sodium hydrogen carbonate and

sodium hydroxide solutions at temperatures

<150 °C and pressures <5 MPa.

Svensk. Papperstidn., 1979; 16: 487–491.

31 Hornsey, D., A. Perkins, J. Davidson. In

TAPPI Annual Meeting Proceedings.

Atlanta, GA, 1989; p. 55.

32 Violette, S., A.v. Heiningen. Selectivity

optimization of extended alkali oxygen

delignification. In Tappi Pulping Conference,

2003.

33 McDonough, T.J., Oxygen delignification.

In Pulp bleaching, principles and

practice, C.W. Dence, D.W. Reeve, Eds.

Chapter 1. TAPPI Press: Atlanta, GA,

USA, 1996.

34 Broden, A., R. Simonson, Solubility of

oxygen. Part 2. Solubility of oxygen in

sodium hydrogen carbonate and

sodium hydroxide solution at temperatures

below 150 °C and pressures below

5 MPa. Svensk. Papperstidn., 1979 (16):

487–491.

35 Ecker, A., H. Sixta, Modelling of Oxygen

Delignification of Sulfite Dissolving

Pulp. R&D Lenzing AG: Lenzing, 2004:

15.

36 Bouchard, J., et al., Determination of

oxygen penetration rate in medium-consistency

kraft pulps. In 2003 Pulping

Conference. TAPPI, 2003.

References 911

37 Axegard, P., B. Backlund, Ecocyclic Pulp

Mill – “KAM”. Final report, 1996–2002.

STFI, Swedish Pulp and Paper Research

Institute: Stockholm, Sweden, 2003.

38 Bennington, C.P.J., I. Pineault, Mass

transfer in oxygen delignification systems:

mill survey results, analysis and

interpretation. Pulp Pap. Can., 1999;

100(12): T395–T402.

39 Johansson, E., The effect of oxygen on

the degradation of lignin model compounds

and residual lignin. PhD-Thesis,

In Department of Pulp and Paper

Chemistry and Technology. Royal Institute

of Technology: Stockholm, 1997.

40 Kleppe, P., H.-M. Chang, R. Eckert,

Delignification of high-yield pulp with

oxygen and alkali. I. preliminary studies

on Southern Pines. Pulp Paper Mag.

Can., 1972; 73(12): 102–106.

41 Hartler, N., H. Norrstrom, S. Rydin,

Oxygen-alkali bleaching of sulphate

pulp. Svensk. Papperstidn., 1970; 73(21):

696–703.

42 Barroca, M.J.M.C., et al., Selectivity

studies of oxygen and chlorine dioxide

in the pre-delignification stages of a

hardwood pulp bleaching plant. Ind.

Eng. Chem. Res., 2001; 40: 5680–5685.

43 Kratzl, K., J.S. Gratzl, P. Claus, Formation

and degradation of biphenyl structures

during alkaline oxidation of phenols

with oxygen. Adv. Chemistry Series,

1966; 59: 157–176.

44 Chang, H.-M., et al., Delignification of

high-yield southern pine soda pulps

with oxygen and alkali. Effects of temperature

and alkali charge. Tappi, 1973;

56(9): 116–119.

45 Kamyr, sales literature, publicly available,

1983.

46 Bennington, C.P.J., I. Pineault, Mass

transfer in oxygen delignification systems:

mill survey results, analysis and

interpretation. Pulp Paper Mag. Can.,

1999; 100(12): 123–131.

47 Svensson, J.E., Experiences of the

SAPOXAL-Oxygen bleaching system at

Skutskar mill, Sweden. In Tappi Seminar

Notes, “Oxygen, Ozone and Peroxide

Pulping and Bleaching”, 1978.

48 Jiang, Z.-H., B.v. Lierop, R. Berry, Hexenuronic

acid groups in pulping and

bleaching chemistry. Tappi, 2000; 83(1):

167–175.

49 Tran, A.V., Effect of pH on oxygen

delignification of hardwood kraft pulp.

Pap. Puu, 2001; 83(5): 405–410.

50 Laine, J., P. Stenius, The effect of ECF

and TCF bleaching on the surface

chemical composition of kraft pulps as

determined by ESCA. Nordic Pulp Paper

Res. J., 1996; 11(3): 201–210.

51 Li, K., D.W. Reeve. Lignin adsorption on

wood fibre surfaces. In International

Pulp Bleaching Conference (IPBC).

Portland, Oregon, 2002.

52 Backa, S., M. Ragnar, The importance of

high final pH in the oxygen delignification.

In TAPPI Fall Conference, 2003.

53 Leader, J.P., H.H.K. Lim, G.B. Byrom,

Medium consistency oxygen delignification

in an O (CD) (EO) D bleaching process

for radiata pine kraft pulp. Appita,

1986; 39(6): 451–454.

54 Thompson, N.S., H.M. Corbett, The

effect of oxygen consumption during

bleaching on the properties of a southern

pine kraft pulp. Tappi, 1976; 59(3):

78–80.

55 Berry, R., et al., Recommendations from

computer modeling for improving single

stage oxygen delignification systems.

In 88th PAPTAC Annual meeting,

Montreal, QC, Canada, 2002.

56 McDonough, T.J., Oxygen delignification.

In Pulp Bleaching – Principles and

Practice, C.W. Dence, Reeve, D.W., Eds.

TAPPI Press: Atlanta, GA, USA, 1996.

57 Fuhrmann, F.E., W. Peter, MC-oxygenperoxide

delignification, an economic

alternative. Tappi Proceedings – International

Oxygen Delignification Conference,

1987: 183–189.

58 Salmela, M., R. Alen, Fate of oxygen in

industrial oxygen-alkali delignification

of softwood kraft pulp. Nordic Pulp

Paper Res. J., 2004; 19(1): 97–104.

59 The Bleaching of Pulp (Singh, R.P.,

Ed.), Tappi Press, 3rd Ed., p. 186–206.

60 Elton, E.F., et al., New technology for

medium-consistency oxygen bleaching.

Tappi, 1980; 63(11): 79–82.

61 Seifert, P., E. Elton, V. Magnotta. Engineering

considerations in the design of

oxygen reactors. In TAPPI Annual

meeting proceedings, 1980.

912 7Pulp Bleaching

62 Brelid, H., T. Friberg, R. Simonson,

TCF bleaching of softwood kraft pulp.

Part 4. Removal of manganese from

wood shavings prior to cooking. Nordic

Pulp Paper Res. J., 1998; 13(1): 50–56.

63 Ericsson, B., B.O. Lindgren,

O. Theander, Svensk. Papperstidn., 1971;

74(22): 757–765.

64 Gilbert, A.F., E. Pavlovova,W.H. Rapson,

Mechanism of magnesium retardation

of cellulose degradation during oxygen

bleaching. Tappi, 1973; 56(6): 95–99.

65 Entwistle, D., E.H. Cole, N.S. Wooding,

The autoxidation of alkali cellulose. Part

II. Textile Res. J., 1949; 19(9): 609–624.

66 Entwistle, D., E.H. Cole, N.S. Wooding,

The autoxidation of alkali cellulose. Part

I: An experimental study of the kinetics

of the reaction. Textile Res. J., 1949;

19(9): 527–546.

67 Manouchehri, M., O. Samuelson, Influence

of catalysts and inhibitors upon

the degradation of carbohydrates during

oxygen bleaching. Svensk. Papperstidn.,

1973; 76(13): 486–492.

68 Brelid, H., T. Friberg, R. Simonson,

TCF bleaching of softwood kraft pulp.

Part 3. Ion exchange of softwood kraft

pulp prior to oxygen delignification.

Nordic Pulp Paper Res. J., 1997; 12(2):

80–85.

69 Liden, J., L.-O. Ohman, On the prevention

of Fe- and Mn-catalyzed H2O2

decomposition under bleaching conditions.

J. Pulp Paper Sci., 1998; 24(9):

269–276.

70 Perng, Y.-S., et al., Catalytic oxygen

bleaching of wood pulp with metal porphyrin

and phthalocyanine complexes.

Tappi J., 1994; 77(11): 119–125.

71 Kishimoto, T., F. Nakatsubo, Non-chlorine

bleaching of kraft pulp. IV. Oxidation

of methyl 4-O-ethyl-b-D-glucopyranoside

with Fenton’s reagent: Effects of

pH and oxygen. Holzforschung, 1998;

52(2): 180–184.

72 Ek, M., et al., Study on the selectivity of

bleaching with oxygen-containing species.

Holzforschung, 1989; 43(6):

391–396.

73 Abrahamsson, K., O. Samuelson, Oxygen-

alkali cooking of wood meal. Part V.

Influence of metal compounds and

soaking in acid. Svensk. Papperstidn.,

1975; 78(4): 135–140.

74 Robert, A., et al., An oxygen treatment

of pulps to further subsequent bleaching.

II. Bleaching pulps previously treated

with oxygen. Assoc. Techn. Ind. Papetiere,

Bull., 1964; 18(4): 166–176.

75 Robert, A., et al., An oxygen treatment

of pulps to further subsequent bleaching.

I. Improvements obtained by using

a catalyst; optimum conditions in the

oxygen treatment. Assoc. Techn. Ind.

Papetiere, Bull., 1964; 18(4): 151–165.

76 Robert, A., P. Traynard, O. Martin-Borret.

US Patent 3,384,533, 1968.

77 Liden, J., L.-O. Ohman, Redox stabilization

of iron and manganese in the +II

oxidation state by magnesium precipitates

and some anionic polymers. Implications

for the use of oxygen-based

bleaching chemicals. J. Pulp Paper Sci.,

1997; 23(5): J193–J199.

78 Wiklund, L., J. Liden, L.-O. Ohman, Solution

formation between Mn(II) and

Mg(II) hydroxides in alkaline aqueous

solution. Nordic Pulp Pap. Res. J., 2001;

16(3): 240–245.

79 Wiklund, L., J. Liden, L.-O. Ohman, Surface

precipitation of MgCO3 on MnCO3

in aqueous solution at 90 °C. Nordic

Pulp Pap. Res. J., 2001; 16(4): 339–345.

80 Sjolander, C., J. Liden, L.-O. Ohman.

Modelling the distribution of “free”,

complexed and precipitated metal ions

in a pulp suspension using Donnan

equilibria. In Proceedings of 2000 International

Pulp and Bleaching Conference,

2000.

81 Lucia, L.A., R.S. Mereck, Effect of lignin

content and magnesium-to-manganese

ratio on the selectivity of oxygen delignification.

Pure Appl. Chem., 2001; 73(12):

2059–2065.

82 Werner, J., A. Ragauskas, J.-E. Jiang,

Intrinsic metal binding capacity of kraft

lignins. J. Wood Chem. Technol., 2000;

20(2): 133–145.

83 Yang, E., Oxygen delignification. The

role of hydroxyl and superoxide radicals.

In Department of Pulp and Paper

Chemistry and Technology. Royal Institute

of Technology: Stockholm, Sweden,

1995.

References 913

84 Basta, J., et al. In TAPPI Pulping Conference.

Chicago, 1995.

85 Ek, M., et al. In TAPPI Pulping Conference.

San Diego, 1994.

86 Chirat, C., D. Lachenal. In TAPPI Pulping

Conference. Atlanta, 1993.

87 Landucci, L.L., N. Sanyer, Influence of

transition metals in oxygen pulping.

Tappi, 1975; 58(2): 60–63.

88 Gierer, J., F. Imsgard, The reactions of

lignins with oxygen and hydrogen peroxide

in alkaline media. Svensk. Papperstidn.,

1977; 80(16): 510–518.

89 Gellerstedt, G., E.L. Lindfors, Hydrophilic

groups in lignin after oxygen

bleaching. Tappi, 1987; 70(6): 119–122.

90 Sun, Y., D.S. Argyropoulos, Fundamentals

of high-pressure oxygen and lowpressure

oxygen-peroxide (Eop) delignification

of softwood and hardwood kraft

pulps: A comparison. J. Pulp Paper Sci.,

1995; 21(6): J185–J190.

91 Gellerstedt, G., E.L. Lindfors, Structural

changes in lignin during kraft pulping.

Holzforschung, 1984; 38: 151–158.

92 Gellerstedt, G., K. Gustafsson,

E.L. Lindfors, Structural changes in lignin

during oxygen bleaching. Nordic

Pulp Paper Res. J., 1986; 3: 14–17.

93 Lucia, L.A., A.J. Ragauskas, F.S. Chakar,

Comparative evaluation of oxygen

delignification processes for low- and

high-lignin-content softwood kraft

pulps. Ind. Eng. Chem. Res., 2002; 41 :

5171–5180.

94 Lai, Y.-Z., M. Funaoka, H.-T. Chen, Oxygen

bleaching of kraft pulp. 1. Role of

condensed units. Holzforschung, 1994;

48(4): 355–359.

95 Asgari, F., D.S. Argyropoulos, Fundamentals

of oxygen delignification. Part

II. Functional group formation/elimination

in residual kraft lignin. Can. J.

Chem., 1998; 76: 1606–1615.

96 Fu, S., L.A. Lucia, Investigation of the

chemical basis for the inefficient lignin

removal in softwood kraft pulp during

oxygen delignification. Ind. Eng. Chem.

Res., 2003; 42: 4269–4276.

97 Chirat, C., D. lachenal. Limits of oxygen

delignification. In TAPPI Pulping Conference.

Atlanta, GA: TAPPI Press,

1998.

98 Roost, C., P. Larsson, G. Gellerstedt,

Reduced brightness variations by

extended oxygen delignification. Nordic

Pulp Paper Res. J., 2000; 15(3): 211–215.

99 Sixta, H. Influence of prehydrolysis on

pulping and bleaching. In Book of

Abstracts, 211th ACS National Meeting.

New Orleans, LA, 1996.

100 Antonsson, S., et al., A comparative

study of the impact of the cooking process

on oxygen delignification. Nordic

Pulp Paper Res. J., 2003; 18(4): 388–394.

101 Zou, H., et al., Effect of hemicellulose

content in kraft brownstock on oxygen

delignification. In TAPPI Fall Conference

and Trade Fair. San Diego, CA:

TAPPI Press, 2002.

102 Akim, L.G., J.L. Colodette,

D.S. Argyropoulos, Factors limiting oxygen

delignification of kraft pulp. In

International Pulp Bleaching Conference.

Halifax, NS, Canada: Pulp and

Paper Technical Association of Canada,

2000.

103 Gellerstedt, G., W.W. Al-Dajani, Some

factors affecting the brightness and

TCF-bleachability of kraft pulps. Nordic

Pulp Paper Res. J., 2003; 18(1): 56–62.

104 Gustavsson, C., K. Sjostrom,

W.W. Al-Dajani, The influence of cooking

conditions on the bleachability and

chemical structure of kraft pulps. Nordic

Pulp Paper Res. J., 1999; 14(1): 71–81.

105 Gellerstedt, G., W.A.-D. W, Bleachability

of alkaline pulps. Part 1. The importance

of beta-aryl ether linkages in lignin.

Holzforschung, 2000; 54(6):

609–617.

106 Roost, C., P. Larsson, G. Gellerstedt,

Brightness and kappa number – important

variables to secure appropriate control

of chemical charges in TCF- and

ECF-bleaching sequences. Nordic Pulp

Paper Res. J., 2000; 15(3): 216–220.

107 Iijima, J.F., H. Taneda, The effect of carryover

on medium-consistency oxygen

delignification of hardwood kraft pulp.

J. Pulp Paper Sci., 1997; 23(12):

J561–J564.

108 Pekkala, O., Some effects of extended

delignification on lignin in kraft cooking.

Pap. Puu, 1985; 67(11): 673–688.

109 Zou, H., et al. Effect of hemicellulose

content in kraft brownstock on oxygen

914 7Pulp Bleaching

delignification. In TAPPI Fall Conference

& Trade Fair, 2002.

110 Violette, S., A.v. Heiningen. Selectivity

improvement during oxygen delignification

by adsorption of polymeric additives.

In 88th Annual Meeting,

PAPTAC, 2001.

111 Ai, V.T., Utilization of additives in oxygen

delignification of hardwood kraft

pulp. Appita, 2000; 53: 300–304.

112 Fu, S., et al., Chemical basis for a selectivity

threshold to the oxygen delignification

of kraft softwood fiber as supported

by the use of chemical selectivity

agents. Ind. Eng. Chem. Res., 2004; 43:

2291–2295.

113 Gratzl, J.S., Abbaureaktionen von Kohlenhydraten

und Lignin durch chlorfreie

Bleichmittel – Mechanismen sowie

Moglichkeiten der Stabilisierung. Das

Papier, 1987; 41(3): 120–130.

114 Ala-Kaila, K., I. Reilama, Step-wise

delignification response in an industrial

two-stage oxygen-alkali delignification

process. Pulp Paper Canada, 2001;

102(6): T170–T172.

115 Ala-Kaila, K., et al., Apparent and actual

delignification response in industrial

oxygen-alkali delignification of birch

kraft pulp. Tappi, 2003; 2(10): 23–27.

116 Li, J., G. Gellerstedt, The contribution to

kappa number from hexenuronic acid

groups in pulp xylan. Carbohydrate Res.,

1997; 302: 213–218.

117 Li, J., O. Sevastyanova, G. Gellerstedt,

The relationship between kappa number

and oxidizable structures in

bleached kraft pulps. J. Pulp Paper Sci.,

2002; 28(8): 262–266.

118 Li, J., G. Gellerstedt, Oxymercurationdemercuration

kappa number: An accurate

estimation of the lignin content in

chemical pulps. Nordic Pulp Paper Res.

J., 2002; 17(4): 410–414.

119 Steffes, F., M. Bokstrom, S. Norden.

Pulp yield improvements using twostage,

extended oxygen delignification.

In Breaking the pulp yield barrier symposium.

Atlanta, GA, 1998.

120 Rolando, C., B. Monties, C. Lapierre,

Thioacidolysis. In Methods in Lignin

Chemistry, C.W.D. S.Y. Lin, Ed. Springer-

Verlag, 1992.

121 Kondo, S. Two-stage oxygen delignification

process and operating experiences.

In Pan-Pacific Pulp & Paper Technology

Conference. Tokyo, Japan, 1992.

122 Backlund, A., Process for oxygen bleaching

using two vertical reactors.

SE-467582, 1990.

123 Sixta, H., A. Borgards, New technology

for the production of high-purity dissolving

pulps. Das Papier, 1999; 53(4):

220–234.

124 Sixta, H., et al., Towards effluent-free

TCF-bleaching of eucalyptus prehydrolysis-

kraft pulp. Das Papier, 1994; 48(8):

526–537.

125 Sixta, H., Zellstoffherstellung unter

Berucksichtigung umweltfreundlicher

Aufschlu.- und Bleichverfahren am

Beispiel von Chemiezellstoffen. Habilitation

Thesis, In Institute for Pulp,

Paper and Fiber Technology. TU Graz:

Graz, 1995: 425.

126 Bokstrom, M., P. Mellander, S. Norden,

Oxygen delignification of lignocellulosic

pulp in two steps. SE-505141, 1997.

127 Bokstrom, M., Y. Lundahl, N.K. Jain,

OxyTrac process. IPPTA, 2002; 14(2):

13–18.

128 Bokstrom, M., S. Norden. Extended oxygen

delignification. In 52nd Appita

Annual General Conference Proceedings,

1998.

129 Bokstrom, M., T. Kobayashi, Extended

oxygen delignification with the OxyTrac

process. KamiPa Gikyoshi, 2000; 54(9):

1214–1222.

130 Saldivia, M.A.G., Two-stage oxygen

delignification system cuts mill’s chemical

use, boosts pulp quality. PaperAge,

2003 (Jan/Feb): 18–24.

131 Dualox – A two-stage oxygen delignification

process (product leaflet). Kvaerner

Pulping: Karlstad, Sweden, 2000.

132 Ragnar, M., A compact way to extend

oxygen delignification. In 7th International

Conference on new available technologies.

Stockholm, Sweden: SPCI,

2002.

133 Aoki, I., Operating experience of twostage

oxygen delignification (DUALOX)

systems. In Japan Tappi Seminar.

Yonugo, Japan, 2001.

References 915

134 Lindstrom, L.-A., Oxygen stage design

and performance. In Tappi Bleach Plant

Operations Short Course, 1991.

135 Bergnor, E., P. Sandstrom, Modified

cooking and oxygen bleaching for

improved production economy and

reduced effluent load. Nordic Pulp Paper

Res. J., 1988; 3(3): 145–155.

136 Gustavsson, R., B. Swan, Tappi, 1975;

58(3): 120–123.

137 Chai, X.-S., Q.X. Hou, J.Y. Zhu, Carboxyl

groups in wood fibers. 2. The fate

of carboxyl groups during alkaline

delignification and its application for

fiber yield prediction in alkaline pulping.

Ind. Eng. Chem. Res., 2003; 42:

5445–5449.

138 Tormund, D., Lindstrom, M. Syrgas

delignifiering med Karbonat som alkalikalla,

STFI report BF 15, 1999, In ‘Ecocyclic

Pulp Mill – “KAM”. Final report,

1996–2002, p. 31 Stockholm, Sweden

(2003), edited by Peter Axegard and Birgit

Bocklund.

Sections 7.4.1–7.4.3

1 Davy, H., On a combination of oxymuriatic

gas and oxygene gas. Phil. Trans.,

1811; 101: 155.

2 Schmidt, E., Ber., 1921; 54: 1860.

3 Schmidt, E., Cellulosechem, 1930; 11: 73.

4 Sodergren, A., et al., Summary of

results from the Swedish project “Environment/

Cellulose”. Water Sci. Technol.,

1988; 20: 49–60.

5 Renberg, L., N.G. Johansson, C. Blom,

Destruction of PCDD and PCDF in

bleached pulp by chlorine dioxide treatment.

Chemosphere, 1995; 30(9):

1805–1811.

6 Gordon, G., R.G. Kieffer,

D.H. Rosenblatt, The chemistry of chlorine

dioxide. Prog. Inorg. Chem., 1972;

15: 201–286.

7 Lenzi, F., W.H. Rapson, Pulp Paper Mag.

Can., 1962; 63: T-442–448.

8 Dodgen, H., H. Taube, The exchange of

chlorine dioxide with chlorite ion and

with chlorine in other oxidation states.

J. Am. Chem. Soc., 1949; 71: 2501–2504.

9 Bray, W.C., Z. Anorg. Allgem. Chem.,

1906; 48: 217–250.

10 Taube, H., H. Dodgen, Application of

radioactive chlorine to the study of the

mechanisms of reactions involving

changes in the oxidation state of chlorine.

J. Am. Chem. Soc., 1949; 71 :

3330–3336.

11 Bray, W.C., Z. Physik. Chem., 1906; 54:

569–608.

12 Halperin, J., H. Taube, The transfer of

oxygen atoms in oxidation-reduction

reactions. III. The reaction of halogenates

with sulfite in aqueous solution.

J. Am. Chem. Soc., 1952; 74: 375–380.

13 Fukutomi, H., G. Gordon, Kinetic study

of the reaction between chlorine dioxide

and potassium iodide in aqueous solution.

J. Am. Chem. Soc., 1967; 89(6):

1362–1366.

14 Svenson, D.R., Chlorine dioxide reactions

with lignin model compounds and

kraft pulps. In Department of Wood and

Paper Science. North Caroline State

University: Raleigh, 2001.

15 Kolar, J., B. Lindgren, B. Pettersson,

Wood Sci. Technol., 1983; 17: 117–128.

16 Heijne, G.V., A. Teder, Kinetics of

decomposition of aqueous chlorine

dioxide solutions. Acta Chim. Scand.,

1973; 27: 4018–4019.

17 Svenson, D.R., et al., Effect of pH on

the inorganic species involved in a chlorine

dioxide reaction system. Ind. Eng.

Chem. Res., 2002; 41(24): 5927–5933.

18 Strumila, G., H. Rapson, Chlorine dioxide

bleaching. In The bleaching of pulp,

R. Singh, Ed. TAPPI: Atlanta, GA, 1979:

113.

19 Rapson, W.H., C.B. Anderson, Pulp

Paper Mag. Can., 1966; 67(1): T47–T55.

20 Rapson, W.H., C.B. Anderson,, Improving

the efficiency of chlorine dioxide bleaching.,

1977; 3(2): TR52–TR55.

21 Zabori, M., Production of chlorine dioxide

– the integrated process. Paper,

1991; 10: 20–22.

22 Fredette, M.C., In Bleach Plant Operations,

Short Course. Atlanta: TAPPI

Press, 1990.

23 Stockburger, P., What you need to know

before buying your next chlorine dioxide

plant. Tappi J., 1993; 76(3): 99–104.

916 7Pulp Bleaching

24 Ni, Y., X. Wang, Mechanism of the

methanol-based ClO2 generation process.

J. Pulp Paper Sci., 1997; 23(7):

J346–J352.

25 Hoq, M.F., et al., Oxidation products of

methanol in chlorine dioxide production.

Ind. Eng. Chem. Res., 1992; 31(7):

1807–1810.

26 Yin, G., Y. Ni, Using hydrogen peroxide

in a methanol-based chlorine dioxide

generation process. Ind. Eng. Chem.

Res., 1999; 38(9): 3319–3323.

27 Nonni, A.J., et al., Method for producing

chlorine dioxide using methanol and

hydrogen peroxide as reducing agent.

PCT/US, 1998.

Section 7.4.4

1 Brage, C., T. Eriksson, J. Gierer, Reactions

of chlorine dioxide with lignins in

unbleached pulps. Part I. Holzforschung,

1991; 45(1): 23–30.

2 Brage, C., T. Eriksson, J. Gierer, Reactions

of chlorine dioxide with lignins in

unbleached pulps. Part II. Holzforschung,

1991; 45(2): 147–152.

3 Brage, C., T. Eriksson, J. Gierer, Reactions

of chlorine dioxide with lignins in

unbleached pulps. Part III. Reactions

with model compounds representing

olefinic structures in native and residual

lignins. Holzforschung, 1995; 49(2):

127–138.

4 Ni, Y., X. Shen, A.R.P. van Heiningen,

Studies on the reactions of phenolic and

nonphenolic lignin model compounds

with chlorine dioxide. J. Wood Chem.

Technol., 1994; 14(2): 243–262.

5 Vilen, E., D.W. Reeve, A.B. McKague,

S.J. Rettig, J. Trotter, Reaction of lignin

model compounds with pulp bleaching

chemicals. Reaction of 4-methylcatechol

with chlorine dioxide. Nordic Pulp Paper

Res. J., 1995; 2: 119–121.

6 McKague, A.B., D.W. Reeve, A.A. Grey,

Reaction of the hardwood lignin model

compound 4-methylsyringol with chlorine

dioxide. Appita J., 1998; 51(6):

448–450.

7 McKague, A.B., G.J. Kang, D.W. Reeve,

Reaction of a lignin model dimer with

chlorine and chlorine dioxide. Holzforschung,

1993; 47(6): 497–500.

8 McKague, A.B., A. Grey, The reaction of

syringol with chlorine dioxide. J. Wood

Chem. Technol., 1996; 16(3): 249–259.

9 Elder, T., Reactions of lignin model

compounds with chlorine dioxide. Molecular

orbital calculations. Holzforschung,

1998; 52(4): 371–384.

10 Elder, T., Reactions of lignin model

compounds with chlorine dioxide. Molecular

orbital calculations on dimers.

J. Pulp Paper Sci., 1999; 25(2): 52–59.

11 Pu, Y., H. Zhan, H. Wu, B. Yue, B. Li,

Change of lignin structure during ECF

bleaching of Pinus elliottii kraft pulp.

Zhongguo Zaozh Xuebao/Trans. China

Pulp Paper, 2002; 17(1): 26–31.

12 Sunahara, H., H. Ohi, Structural analysis

of residual lignin in eucalyptus kraft

pulp by pyrolysis gas-chromatography.

Mokuzai Gakkaishi/J. Jap. Wood Res.

Soc., 2001; 47(1): 33–38.

13 Brogdon, B.N., D.G. Mancosky,

L.A. Lucia, New insights into lignin

modification during chlorine dioxide

bleaching sequences (II): Modifications

in extraction (E) and chlorine dioxide

bleaching (D1). J. Wood Chem. Technol.,

2004; 24(3): 221–237.

14 Brogdon, B.N., D.G. Mancosky,

L.A. Lucia, New insights into lignin

reactivation towards chlorine dioxide

bleaching after caustic extraction. Tappi

International Pulp Bleaching Conference,

2002: 181–193.

15 Brogdon, B.N., D.G. Mancosky,

L.A. Lucia, New insights into lignin

modification during chlorine dioxide

bleaching sequences (I): Chlorine dioxide

delignification. J. Wood Chem. Technol.,

2004; 24(3): 201–219.

16 Daniel, A.I.D., D.V. Evtuguin,

A.J.D. Silvestre, C.P. Neto, Chemical

features of hardwood unbleached kraft

pulps and their ECF bleachability. J. Pulp

Paper Sci., 2004; 30(4): 94–98.

17 Koda, K., H. Goto, H. Shintani,

Y. Matsumoto, G. Meshitsuka, Oxidative

cleavage of lignin aromatics during

chlorine bleaching of kraft pulp. J. Wood

Sci., 2001; 47(5): 362–367.

18 Vilen, E.J., A.B. McKague, D.W. Reeve,

Quantification of muconic acid-type

References 917

structures in high molecular weight

material from bleach plant effluents.

Holzforschung, 2000; 54(3): 273–278.

19 Vilen, E., D.W. Reeve, A.B. McKague,

Identification of muconic acids in

bleach plant effluent. Holzforschung,

1996; 50(6): 575–578.

20 Toven, K., G. Gellerstedt, R. Kleppe,

S. Moe, Use of chlorine dioxide and

ozone in combination in prebleaching.

J. Pulp Paper Sci., 2002; 28(9): 305–310.

21 Yoon, B.-H., L.-J. Wang, Chlorate reduction

in ClO2 prebleaching by the addition

of hypochlorous acid scavengers.

J. Pulp Paper Sci., 2002; 28: 274–279.

22 Hoigne, J., H. Bader, Kinetics of reactions

of chlorine dioxide (OClO) in

water. 1. Rate constants for inorganic

and organic compounds. Water Res.,

1994; 28(1): 45–55.

23 Barroca, M.J.M.C., J.A.A.M. Castro,

Kinetics of the first chlorine dioxide

bleaching stage (D1) of a hardwood

kraft pulp. Ind. Eng. Chem. Res., 2003;

42(18): 4156–4161.

24 Tratnyek, P.G., J. Hoigne, Kinetics of

reactions of chlorine dioxide (OClO) in

water. 2. Quantitative structure-activity

relationships for phenolic compounds.

Water Res., 1994; 28(1): 57–66.

25 Rajan, P.S., C.-L. Chen, J.S. Gratzl,

P.S. Rajan, Formation of chloro-organics

during chlorine bleaching of softwood

kraft pulp: Part 2. Chlorination of

pine kraft lignin fractions. Holzforschung,

1996; 50(2): 165–174.

26 Gunnarsson, P.I., S. Ljunggren, Formation

of chlorinated organic material and

chlorate during chlorine dioxide prebleaching

of kraft pulp: Effects of

sodium chloride, charge of chlorine

dioxide and pH. J. Pulp Paper Sci., 1996;

22(12): J457–J463.

27 Gunnarsson, N.P.I., S.C.H. Ljunggren,

The kinetics of lignin reactions during

chlorine dioxide bleaching. Part 1. Influence

of pH and temperature on the

reaction of 1-(3,4-dimethoxyphenyl)

ethanol with chlorine dioxide in aqueous

solution. Acta Chim. Scand., 1996;

50(5): 422–431.

28 Pei, Y.S., Z.K. Luan, H. Chen, Effects of

electron activity and pH on the generation

and stability of chlorine dioxide.

Chinese J. Inorg. Chem., 2001; 17(3):

407–413.

29 Svenson, D., J.F. Kadla, H.M. Chang,

H. Jameel, Effect of pH on the mechanism

of OClO center dot oxidation of

aromatic compounds. Can. J. Chem. –

Rev. Canadienne De Chimie, 2002; 80(7):

761–766.

30 Gu, Y.X., L. Edwards, Virtual bleach

plants, part 2: Unified ClO2 and Cl2

bleaching model. Tappi J., 2003; 2(7):

3–8.

31 Svenson, D.R., J.F. Kadla, H.M. Chang,

H. Jameel, Effect of pH on the inorganic

species involved in a chlorine dioxide

reaction system. Ind. Eng. Chem. Res.,

2002; 41(24): 5927–5933.

32 Kieffer, R.G., G. Gordon, Disproportionation

of chlorous acid. 2. Kinetics. Inorg.

Chem., 1968; 7(2): 239–244.

33 Kieffer, R.G., G. Gordon, Disproportionation

of chlorous acid. I. Stoichiometry.

Inorg. Chem., 1968; 7(2): 235–238.

34 Bjorklund, M., U. Germgard, P. Jour,

A. Forsstrom, AOX formation in ECF

bleaching at different kappa numbers –

Influence of oxygen delignification and

hexenuronic acid content. Tappi J.,

2002; 1(9): 20–24.

35 Bjorklund, M., U. Germgard, J. Basta,

Formation of AOX and OCI in ECF

bleaching of birch pulp. Tappi J., 2004;

3(8): 7–12.

36 Lachenal, D., M.J. Joncourt, P. Froment,

C. Chirat, Reduction of the formation of

AOX during chlorine dioxide bleaching.

J. Pulp Paper Sci., 1998; 24(1): 14–17.

37 Joncourt, M.J., P. Froment, D. Lachenal,

C. Chirat, Reduction of AOX formation

during chlorine dioxide bleaching. Tappi

J., 2000; 83(1): 144–148.

38 Ragnar, M., A. Torngren, Ways to

reduce the amount of organically bound

chlorine in bleached pulp and the AOX

discharges from ECF bleaching. Nordic

Pulp Paper Res. J., 2002; 17(3): 234–239.

39 Nakamata, K., H. Ohi, Examination of

polychlorinated dibenzo-p-dioxins and

polychlorinated dibenzofurans in process

water of kraft pulp bleaching mill

using chlorine dioxide from the aspect

of environmental water quality. J. Wood

Sci., 2003; 49(6): 525–530.

918 7Pulp Bleaching

40 Ohi, H., S. Hosoya, K. Magara, Dioxins

levels in chlorine dioxide bleaching of

hardwood oxygen-bleached kraft pulp

(I). Kami Pa Gikyoshi/Jpn. Tappi J.,

2002; 56(8): 92–98.

41 Suss, H.U., N. Nimmerfroh, Formation

of halogenated compounds bleaching

chemical pulp with hypochlorite and

chlorine dioxide. Das Papier, 1991; 45(2):

52–61.

42 Nakamata, K., Y. Motoe, H. Ohi, Evaluation

of chloroform formed in process of

kraft pulp bleaching mill using chlorine

dioxide. J. Wood Sci., 2004; 50(3):

242–247.

43 Bright, D.A., P.V. Hodson, K.J. Lehtinen,

B. McKague, J. Rodgers, K. Solomon,

Use of chlorine dioxide for the bleaching

of pulp: A re-evaluation of ecological

risks based on scientific progress since

1993. Pulp Paper Can., 2000; 101(1):

53–55.

44 Solomon, K., H. Bergman, R. Huggett,

D. Mackay, B. McKague, A review and

assessment of the ecological risks associated

with the use of chlorine dioxide

for the bleaching of pulp. Pulp Paper

Can., 1996; 97(10): 35–44.

45 Freire, C.S.R., A.J.D. Silvestre,

C.P. Neto, J.A.S. Cavaleiro, Glucuronoxylan-

derived chlorinated compounds in

filtrates from chlorine dioxide bleaching:

a comparative study between eucalypt

(E. globulus) and birch (Betula spp.)

kraft pulps. Appita J., 2004; 57(1):

40–42.

46 Freire, C.S.R., A.J.D. Silvestre,

C.P.Neto, A.M.S. Silva, D.V. Evtuguin,

J.A.S. Cavaleiro, Easily degradable

chlorinated compounds derived from

glucuronoxylan in filtrates from chlorine

dioxide bleaching of Eucalyptus globulus

kraft pulp. Holzforschung, 2003;

57(1): 81–87.

zz Svenson, D.R., H.M. Chang, H. Jameel,

J.F. Kadla, The role of non-phenolic lignin

in chlorate-forming reactions during

chlorine dioxide bleaching of softwood

kraft pulp. Holzforschung, 2005;

59(2): 110–115.

Sections 7.4.5–7.4.7

1 Lachapelle, R.C., W.G. Strunk,

R.J. Klein, Using hydrogen peroxide in

100% chlorine dioxide bleaching

sequences. Tappi J., 1992; 181–186.

2 Savoie, M., P. Tessier, A mathematical

model for chlorine dioxide delignification.

Tappi, 1997; 80(6): 145–153.

3 Reeve, D.W., The technology of chemical

pulping. Chapter 8: Chlorine dioxide

in bleaching stages. In Pulp Bleaching –

Principles and Practice, D.W. Reeve,

C.W. Dence, Ed. TAPPI Press: Atlanta,

GA, 1996: 381–394.

4 Gierer, J., Chemistry of delignification.

Part 2: Reactions of lignins during

bleaching. Wood Sci. Technol., 1986;

20: 1–33.

5 Barroca, M.J.M.C., et al., Selectivity

studies of oxygen and chlorine dioxide

in the pre-delignification stages of a

hardwood pulp bleaching plant. Ind.

Eng. Chem. Res., 2001; 40: 5680–5685.

6 Svenson, D.R., et al., Effect of pH on

the inorganic species involved in a chlorine

dioxide reaction system. Ind. Eng.

Chem. Res., 2002; 41(24): 5927–5933.

7 Teleman, A., et al., Characterization of

4-deoxy-b-L-threo-hex-4-enopyranosyluronic

acid attached to xylan in pine

kraft pulp and pulping liquor by 1H and

13C NMR spectroscopy. Carbohydrate

Res., 1995; 272: 55–71.

8 Marechal, A., Acid extraction of the alkaline

wood pulps (Kraft or Soda/AQ)

before or during bleaching, reason and

opportunity. J. Wood Chem. Technol.,

1993; 13(2): 261–281.

9 Vuorinen, T., et al. Selective hydrolysis

of hexeneuronic acid groups and its applications

in ECF and TCF bleaching of

kraft pulps. In 1996 International Pulp

Bleaching Conference. Washington,

1996.

10 Teleman, A., et al., Identification of the

acidic degradation products of hexenuronic

acid and characterization of

hexenuronic acid-substituted xylooligosaccharides

by NMR spectroscopy. Carbohydrate

Res., 1996; 280: 197–208.

11 Suess, H.U. and C.L. Filho. Progress in

bleaching to top brightness with low

References 919

reversion. in 37th ABTCP Annual Conf.

2004. Sao Paolo, Brazil.

12 Juutilainen, D., et al. Combining chlorine

dioxide bleaching of birch kraft

pulp with an A stage at high temperature.

In Tappi Pulping Conference,

1999.

13 Ragnar, M., A. Torngren, Ways to

reduce the amount of organically bound

chlorine in bleached pulp and the AOX

discharges from ECF bleaching. Nordic

Pulp Paper Res. J., 2002; 17(3): 234–239.

14 Ragnar, M. Compact bleaching – a concept

for fully bleached HW kraft pulp in

only 2 stages. In 35th Congresso e Exposicao

Anual de Celulose e Papel. Sao

Paolo, Brazil: Associacao Brasileira Tecnica

de Celulose e Papel, 2002.

15 Suess, H.U., C.L. Filho, K. Schmidt.

Bleaching of eucalyptus kraft pulp with

low residual halogenated compounds

(OX) “ECF"-light”. In 32nd ABTCP

Annual Meeting. Sao Paolo, Brazil,

1999.

16 Ragnar, M., M. Leite, Bleaching of cellulose

pulp in a first chlorine dioxide

bleaching step. Kvaerner Pulping: PCT,

2004.

17 Seger, G.E., H. Jameel, H.-M. Chang,

A two-step high-pH/low-pH method for

improved efficiency of D-stage bleaching.

Tappi J., 1992; 174–180.

18 Ljunggren, S., E.B. Gidnert, J. Kolar,

Chlorine dioxide bleaching with a twostep

low-high pH profile. Tappi, 1996;

79(12): 152–160.

19 Cook, R.A., A bleaching process for

minimizing AOX discharges. Appita J.,

1991; 44(3): 179–183.

20 Jiang, Z.-H., B.v. Lierop, R. Berry.

Improving chlorine dioxide bleaching

with aldehydes. In International Pulp

Bleaching Conference. Portland, OR,

2002.

21 Solomon, K., et al., A review and assessment

of the ecological risks associated

with the use of chlorine dioxide for the

bleaching of pulp. Pulp Paper Can.,

1996; 97(10): 35–44.

22 Germgaard, U., S. Larsson, Oxygen

bleaching in the modern softwood kraft

pulp mill. Pap. Puu, 1983; 65(4):

287–290.

23 Ni, Y., A.R.P.v. Heiningen, G.J. Kubes,

Mechanism of formation of chloroorganics

during chlorine dioxide prebleaching

of kraft pulp. Nordic Pulp

Paper Res. J., 1993; 4: 350–351.

24 Solomon, K.R., Chlorine in the bleaching

of pulp and paper. Pure Appl. Chem.,

1996; 68(9): 1721–1730.

25 Barroca, M.J.M.C., Seco, I.M.,

Fernandez, P.M.M., Ferreira, L.M.G.A.,

Castro, J.A.A.M., Reduction of AOX in

the bleach plant of a pulp mill. Environ.

Sci. Technol., 2001; 35(21): 4390–4393.

26 Bjorklund, M., et al., AOX formation in

ECF bleaching at different kappa numbers

– influence of oxygen delignification

and hexenuronic acid content.

Tappi, 2002; 1(7): 20–24.

27 Buchert, J., et al., Effect of cooking and

bleaching on the structure of xylan in

conventional pine kraft pulp. Tappi,

1995; 78(11): 125–130.

28 Vuorinen, T., et al. Selective hydrolysis

of hexenuronic acid groups opens new

possibilities for development of bleaching

processes. In 9th International Symposium

on Wood and Pulping Chemistry.

Montreal, Canada, 1997.

29 Lachenal, D., C. Chirat. High temperature

ClO2 bleaching of Kraft pulp. In

International Pulp Bleaching Conference.

Helsinki, Finland, 1998.

30 Ohlavi, P., V. Janne. Ozone bleaching

and AHL-stage acid treatment in a modern

multichemical bleach plant. In 35th

ABTCP Annual Conference. Sao Paolo,

Brazil, 2002.

31 Suess, H.U., et al., Approaches to minimize

the formation of AOX in kraft

pulp bleaching. Das Papier, 1990; 44(7):

339–348.

32 Sixta, H., ECF bleaching of HW-Kraft

pulps. Internal Report, R&D Lenzing

AG, 2002.

Sections 7.5.1–7.5.3, and 7.5.5

1 Kolb, M.J., Bull. Soc. Ind. Mulhouse,

1868; 38: 259.

2 Brin, A., L.Q. Brin. US Patent Application,

1889.

920 7Pulp Bleaching

3 Cunningham, M., C. Doree, Chem. Soc.,

1912; 101: 497.

4 Campbell, J., L.O. Rolleston. US Patent

Application, 1930.

5 Brabender, G.J., J.W. Bard, J.M. Daily.

US Patent Application. 1949.

6 Cotton, F.A., G. Wilkinson, Advanced

Inorganic Chemistry. 5th edn. New York:

John Wiley & Sons, 1988: 452–454.

7 Trambarulo, R., et al., The molecular

structure, dipole moment, and g factor

of ozone from its microwave spectrum.

J. Chem. Phys., 1953; 21: 851–855.

8 Huisgen, R., 1,3-Dipolar cycloadditions.

Angew. Chem., 1963; 75(13): 604–637.

9 Kilpatrick, M.L., C.C. Herrick,

M. Kilpatrick, The decomposition of

ozone in aqueous solution. J. Am.

Chem. Soc., 1956; 78: 1784–1789.

10 Quederni, A., J.C. Mora, R.S. Bes,

Ozone absorption in water: Mass transfer

and solubility. Ozone Sci. Eng., 1987;

9: 1–12.

11 Sotelo, J.L., et al., Henry’s law constant

for the ozone-water system. Water Res.,

1989; 23(10): 1239–1246.

12 Kosak-Channing, L.F., G.R. Helz,

Environ. Sci. Technol., 1983; 17(3):

145–149.

13 Oyama, S.T., Chemical and catalytic

properties of ozone. Catal. Rev. – Sci.

Eng., 2000; 42(3): 279–322.

14 Owen, D., J.R. Anderson, G. Homer,

Bleaching Chemicals. In Pulp Bleaching:

Principles and Practice, C.W. Dence,

D.W. Reeve, Eds. Tappi Press: Atlanta,

Georgia, 1996: 71–90.

15 Bennington, C.P.J., Mixing gases into

medium-consistency pulp suspensions

using rotary devices. Tappi J., 1993;

76(7): 77–86.

16 Sixta, H., Evaluation of new mixing system.

R&D Lenzing AG: Lenzing, 1997.

17 Osawa, Z., C. Schuerch, The action of

gaseous reagents on cellulosic materials.

I. Ozonization and reduction of

unbleached kraft pulp. Tappi, 1963;

46(2): 79–87.

18 Bouchard, J., H.M. Nugent, R.M. Berry,

The role of water and hydrogen ion concentration

in ozone bleaching of kraft

pulp at medium consistency. Tappi J.,

1995; 78(1): 74–82.

19 Scallan, A.M., H.V. Green,Wood Fiber,

1975; 7(3): 226–233.

20 Zhang, X.-Z., et al., Initial delignification

and cellulose degradation of conventional

and ethanol-assisted ozonation.

J. Wood Chem. Technol., 1998;

18(2): 129–157.

21 Zhang, X.Z., Ozone bleaching of chemical

pulp. PhD Thesis,University of New

Brunswick: Fredericton, NB, 1998.

22 Levenspiel, O., The Chemical Reaction

Omnibook. Corvallis, Oregon: Oregon

State University Book Stores, Inc., 1989.

23 Griffin, R., Y. Ni, A.R.P.v. Heiningen,

The development of delignification and

lignin-cellulose selectivity during ozone

bleaching. J. Pulp Paper Sci., 1998; 24(4):

111–115.

24 Liebergott, N., B.v. Lierop, A. Skothos,

A survey of the use of ozone in bleaching

pulps, Part 1. Tappi J., 1992; 75(1):

145–152.

25 Rewatkar, V.B., C.P.J. Bennington, Gasliquid

mass transfer in low- and medium-

consistency pulp suspensions. Can.

J. Chem. Eng., 2000; 78(3): 504–512.

26 Bennington, C.P.J., R.J. Kerekes, Power

requirements for pulp suspension fluidization.

Tappi J., 1996; 79(2): 253–258.

27 Gerzer, T., Medium consistency ozone

bleaching in mill application. Lenzing

AG: Lenzing, 2004.

28 Sixta, H., Zellstoffherstellung unter

Berucksichtigung umweltfreundlicher

Aufschlu.- und Bleichverfahren am

Beispiel von Chemiezellstoffen. Habilitation

Thesis, In Institute for Pulp,

Paper and Fiber Technology. TU Graz:

Graz, 1995: 425.

29 Mielisch, H.-J., et al., TCF bleaching of

kraft pulp: Investigation of the mixing

conditions in an MC ozone stage. Holzforschung,

1995; 49(5): 445–452.

30 Sreeram, C., et al., Laboratory-scale medium-

consistency ozone bleaching system.

Tappi J., 1994; 77(10): 161–168.

31 Hurst, M.M., Effects of pulp consistency

and mixing intensity on ozone bleaching.

Tappi J., 1993; 76(4): 156–161.

32 Seth, R.S., C.P.J. Bennington, Fiber

morphology and the response of pulps

to medium-consistency fluidization.

Tappi J., 1995; 78(12): 152–154.

References 921

33 Ellis, M.J., et al., Fibre deformation during

medium consistency mixing: role of

residence time and impeller geometry.

Appita J., 1998; 51(1): 29–34.

34 Funk, E., et al. Espanola ozone bleaching

pilot plant: status report. In Tappi

Pulping Conference, Boston, 1992.

35 Berry, R.M., et al. Medium consistency

bleaching with high concentration

ozone gas in the Paprican pilot plant

and a comparison with laboratory

bleaching. In International Pulp Bleaching

Conference, Vancouver, Canada,

1994.

36 Henricson, K., J. Peltonen, T. Laxen,

Bleaching of foamed pulp with ozone.

European Patent Application, Ahlstrom,

A., Corp., Finland, 1990.

37 Laxen, T., H. Ryynanen, K. Henricson,

Medium-consistency ozone bleaching.

Pap. Puu, 1990; 72(5): 504–507.

38 Sixta, H., et al., Process for the chlorinefree

bleaching of pulp. European Patent

Application. Lenzing AG, Austria, 1991.

39 Sixta, H., et al., Medium consistency

ozone bleaching: laboratory and mill

experience. Das Papier, 1991; 45(10):

610–624.

40 Dillner, B., W. Peter, Application of MC

ozone delignification to bleaching

chemical pulp. Pap. Puu, 1992; 74(9):

720–726.

41 Sixta, H., et al., Towards effluent-free

TCF-bleaching of eucalyptus prehydrolysis-

kraft pulp. Das Papier, 1994; 48(8):

526–537.

42 Prutsch, W., et al. Chlorine-free bleaching

of wood and annual plant pulp. In

Wood and Pulping Chemistry Symposium,

Raleigh, NC, 1989.

43 Lindholm, C.-A., Effect of heterogeneity

in pulp bleaching with ozone. Pap. Puu,

1986; 4: 283–290.

44 Lindholm, C.-A., Effect of pulp consistency

and pH in ozone bleaching; Part

2. Lignin removal and carbohydrate degradation.

In Tappi Proceedings – International

Oxygen Delignification Conference,

1987.

45 Berggren, R., Cellulose degradation in

pulp fibers studied as changes in molar

mass distributions. PhD-Thesis, In

Department of Fibre and Polymer Technology.

Royal Institute of Technology:

Stockholm, 2003.

46 Lindholm, C.-A., Effect of dissolved

reaction products on pulp viscosity in

low consistency ozone bleaching. Pap.

Puu, 1990; 72(3): 254–256.

47 Oltmann, E., et al., Ozone bleaching

technology: a comparison between high

and medium consistency. Part I. Das

Papier, 1992; 7: 341–350.

48 Ragner, M., Ozone bleaching installations.

Personal communication, 2004.

49 Krotscheck, A., A. Wimmer, Ozone

bleaching installations. Personal communication,

2004.

50 Jakobson, B., P.O. Lindblad,

N.-O. Nilvebrandt. Lignin reactions

affect the attack of ozone on carbohydrates.

In 1991 International Pulp

Bleaching Conference, SPCI. Stockholm,

Sweden, 1991.

51 Rutkowski, J., R. Szopinski, Investigations

on bleaching of sulfate pine pulp

with ozone. Cellulose Chem. Technol.,

1984; 18: 323–333.

52 Lindholm, C.-A., Cellulose Chem. Technol.,

1989; 23(3): 307–319.

53 Kishimoto, T., F. Nakatsubo, Non-chlorine

bleaching of kraft pulp. V. Participation

of radical species in ozonation of

methyl 4-O-ethyl-b-d-glucopyranoside.

Holzforschung, 1998; 52(2): 185–190.

54 Staehelin, J., J. Hoigne, Decomposition

of ozone in water: rate of initiation by

hydroxide ions and hydrogen peroxide.

Environ. Sci. Technol., 1982; 16(10):

676–681.

55 Staehelin, J., R.E. Buhler, J. Hoigne,

Ozone decomposition in water studied

by pulse radiolysis. 2. OH and HO4 as

chain intermediates. J. Phys. Chem.,

1984; 88: 5999–6004.

56 Pan, G.Y., et al., Studies on ozone

bleaching. I. The effect of pH, temperature,

buffer systems and heavy metalions

on stability of ozone in aqueous solution.

J. Wood Chem. Technol., 1984;

4(3): 367–387.

57 Ragnar, M., T. Eriksson, T. Reitberger,

Radical formation in ozone reactions

with lignin and carbohydrate model

compounds. Holzforschung, 1999; 53(3):

292–298.

922 7Pulp Bleaching

58 Ragnar, M., et al., A new mechanism in

the ozone reaction with lignin-like

structures. Holzforschung, 1999; 53(4):

423–428.

59 Allison, R.W., Effects of temperature

and chemical pretreatment on pulp

bleaching with ozone. In International

Pulp Bleaching Conference, CPPA.

Quebec, Canada, 1985.

60 Chandra, S., Studies on ozonization of

softwood pulps and evaluation of oxygen

prebleaching options. In Department

of Wood and Paper Science. NC

State University: Raleigh, NC, 1985.

61 Soteland, N., Comparison between oxygen

and ozone delignification of sulphite

pulps. In Tappi Symposium –

Oxygen Delignification, 1984.

62 Liebergott, N., B.v. Lierop, A. Skothos,

A survey of the use of ozone in bleaching

pulps, Part 2. Tappi J., 1992; 2:

117–124.

63 Patt, R., O. Kordsachia, D.L.-K. Wang,

Einsatz von Ozon zur Zellstoffbleiche.

Das Papier, 1988; 42(10A): V14–V23.

64 Simoes, R.M.S., J.A.A.M.e. Castro,

Ozone delignification of pine and eucalyptus

kraft pulps. 2. Selectivity. Ind.

Eng. Chem. Res., 1999; 38: 4608–4614.

65 Lindqvist, B., et al., Ozone bleaching of

sulfite pulps. In Tappi Proceedings –

International Sulfite Pulping Conference,

1982.

66 Lindqvist, B., A. Marklund, Ozone

bleaching of sulfite pulps. Svensk. Papperstidn.,

1984; 6: 54–64.

67 Staehelin, J., J. Hoigne, Decomposition

of ozone in water in the presence of

organic solutes acting as promoters and

inhibitors of radical chain reactions.

Environ. Sci. Technol., 1985; 19(12):

1206–1213.

68 Chirat, C., D. Lachenal, Minimizing

pulp degradation during totally chlorine

free bleaching sequences including an

ozone stage. In International Pulp

Bleaching Conference Papers, 1994.

69 Szopinski, R., B. Stromberg, High

brightness using totally chlorine free

(TCF) bleaching sequences. In Non-

Chlorine Bleaching Conference. Hilton

Head, 1993.

70 Gause, E., et al., Ozone bleaching technology:

a comparison between high and

medium consistency. Part II. Das Papier,

1993; 47(7): 331–337.

71 Funk, E., et al., Espanola ozone bleaching

pilot plant: progress update. In 47th

Annual General Conference, APPITA.

Parkville, Victoria, Australia, 1993.

72 Ek, M., et al., Study on the selectivity of

bleaching with oxygen-containing species.

Holzforschung, 1989; 43(6):

391–396.

73 Buxton, G.V., Greenstock, C.L., Helman,

W.P., Ross, A.B., Critical review of

rate constants for reactions of hydrated

electrons, hydrogen atoms and hydroxyl

radicals in aqueous solution. J. Phys.

Chem. Ref. Data, 1988; 17(2): 513–886.

74 Kamishima, K., T. Fujii, I. Akkatsu, Factors

affecting the carbohydrate protection

of methanol during ozone bleaching.

Mokuzai Gakkaishi, 1983; 29(7):

474–480.

75 Brolin, A., J. Gierer, Z. Zhang, On the

selectivity of ozone delignification of

softwood kraft pulps. Wood Sci. Technol.,

1993; 27: 115–129.

76 Ruiz, J., et al., Ozone organosolv bleaching

of radiata pine kraft pulp. Wood Sci.

Technol., 1997; 31: 217–223.

77 Zhang, Y., et al., Degradation of wood

polysaccharide model compounds during

ozone treatment. J. Pulp Paper Sci.,

1997; 23(1): J23–J27.

78 Magara, K., et al., Accelerated degradation

of cellulose in the presence of lignin

during ozone bleaching. J. Pulp

Paper Sci., 1998; 24(8): 264–268.

79 Johansson, E.E., J. Lind, S. Ljunggren,

Aspects of the chemistry of cellulose

degradation and the effect of ethylene

glycol during ozone delignification of

kraft pulps. J. Pulp Paper Sci., 2000;

26(7): 239–244.

80 Heiningen, A.R.P.v., Y. Ni, Ozone dioxane

bleaching of chemical pulp. US Patent

Application. University of New

Brunswick, CA, 1994.

81 Ni, Y., T. Ooi, Laboratory study on

bleaching softwood kraft pulp by a

totally chlorine-free process including

the novel ozone bleaching. Tappi J.,

1996; 79(10): 167–172.

82 Lindholm, C.-A., Effect of pulp consistency

and pH in ozone bleaching. Part

References 923

4. Alkaline extraction of ozone-bleached

pulp. Pap. Puu, 1989; 2: 145–154.

83 Bouchard, J., E. Morelli, R.M. Berry,

Gas-phase addition of solvent to ozone

bleaching of kraft pulp. J. Pulp Paper

Sci., 2000; 26(1): 30–34.

84 Kang, G.J., Y. Ni, A.R.P.V. Heiningen,

Further understanding on the cause of

cellulose degradation during ozone

bleaching. Ippta, 2001; 13(4): 1–5.

85 Hoigne, J., H. Bader, The role of hydroxyl

radical reactions in ozonation processes

in aqueous solutions.Water Res.,

1976; 10: 377–386.

86 Roncero, M.B., J.F. Colom, T. Vidal,

Why oxalic acid protects cellulose during

ozone treatments? Carbohydrate

Polymers, 2002; 52: 411–422.

87 Lindeberg, O., Concurrent bleaching

and metal management by addition of

EDTA to chlorine dioxide and ozone

stages, degradation of EDTA and formation

of oxalic acid. In International Pulp

Bleaching Conference. Tappi, 1996.

88 Brown, J., et al., Medium-consistency

ozone bleaching with enzyme pretreatment.

Tappi J., 1994; 77(11): 105–109.

89 Ryynanen, H., P.J. Nelson, C.W.J. Chin,

Ozone bleaching of eucalypt kraft

pulps. Appita, 1995; 48(6): 440–444.

90 Lindholm, C.-A., Alkaline extraction of

ozone-bleached pulp. Part 1. General

aspects and outlines for further

research. Pap. Puu, 1992; 74(3):

224–231.

91 Odermatt, J., et al., The application of

sodium tetrahydroborate to improve the

properties of ozonized softwood kraft

pulp. Cellulose Chem. Technol., 1998;

32(3–4): 309–325.

92 Chirat, C., D. Lachenal, Effect of ozone

on pulp components application to

bleaching of kraft pulps. Holzforschung,

1994; 48 (Suppl.): 133–139.

93 Patt, R., TCF bleaching of softwood

kraft pulp with particular emphasis on

Borol solution stabilization of ozone

treated pulp. Report, University of

Hamburg: Hamburg, 1995.

94 Lindholm, C.-A., Alkaline extraction of

ozone-bleached pulp. Part 2. Effect of

leachable lignin. Nordic Pulp Paper Res.

J., 1992; 2: 95–102.

95 Liebergott, N., B.v. Liero, The use of

ozone in bleaching and brightening

wood pulps. Part I. Chemical pulps. In

Tappi – Oxygen, Ozone and Peroxide

Bleaching. New Orleans, 1978.

96 Liebergott, N., et al., Bleaching a softwood

kraft pulp without chlorine compounds.

In Tappi Proceedings – Pulping

Conference, 1983.

97 Loras, V., N. Soteland, Bleaching of sulphite

pulps with oxygen and ozone. In

Tappi Proceedings – International Pulp

Bleaching Conference, 1982.

98 Gupta, M.K., R.C. Eckert. OZ prebleaching:

Influence on viscosity and sheet

strength. In Tappi Symposium – Oxygen

Delignification, 1984.

99 Godsay, M.P., E.M. Pearce. Physicochemical

properties of ozone oxidized

kraft pulps. In Tappi Symposium – Oxygen

Delignification, 1984.

100 Bokstrom, M., M. Wennerstrom, Ozone

comes of age. Pulp Paper Europe, 2001;

6(5).

101 Metso, PulpWay (brochure). Metso

Paper: Sundsvall, Sweden, 2001.

102 Eriksson, T., T. Reitberger, Formation of

hydroxyl radicals from direct ozone

reactions with pulp constituents. In 8th

International Symposium on Wood and

Pulping Chemistry (ISWPC). Helsinki,

Finland, 1995.

103 Chirat, C., D. Lachenal, Effect of hydroxyl

radicals on cellulose and pulp and

their occurrence during ozone bleaching.

Holzforschung, 1997; 51(2):

147–154.

104 Zhang, Y., On the selectivity of ozone

delignification during bleaching. PhD

Thesis, In Department of Fibre and

Polymer Technology. Kungliga Tekniska

Hogskolan (KTH): Stockholm, Sweden,

1994.

105 Gratzl, J.S., Die chemischen Grundlagen

der Zellstoffbleiche mit Sauerstoff,

Wasserstoffperoxid und Ozon – ein

kurzer Uberblick. Das Papier, 1992; 10A:

V1–V8.

106 Ragnar, M., On the importance of radical

formation in ozone bleaching. PhD

Thesis, In Pulp and Paper Research

Institute. KTH: Stockholm, Sweden,

2000.

924 7Pulp Bleaching

107 Gierer, J., Y. Zhang. The role of hydroxyl

radicals in ozone bleaching process. In

Seventh International Symposium on

Wood and Pulping Chemistry (ISWPC).

Beijing, China, 1993.

108 Ragnar, M., On the importance of the

structural composition of pulp for the

selectivity of ozone and chlorine dioxide

bleaching. Nordic Pulp Paper Res. J.,

2001; 16(1): 72–79.

109 Pan, G., et al., Model experiments on

the splitting of glycosidic bonds by

ozone. In International Symposium of

Wood and Pulping Chemistry (ISWPC),

Stockholm, Sweden 1981.

110 Herbst, H.E., H. Krassig, The distribution

of oxidant consumption in bleaching.

Tappi, 1959; 42(8): 660–664.

111 Soteland, N., Bleaching of chemical

pulps with oxygen and ozone. Pulp

Paper Mag. Can. 1974; 75(4): 91–96.

112 Patt, R., et al. In TAPPI Oxygen Delignification

Symposium, 1984.

113 Antonsson, S., et al., A comparative

study of the impact of the cooking process

on oxygen delignification. Nordic

Pulp Paper Res. J., 2003; 18(4): 388–394.

114 Chandra, S., Studies on ozonation of

softwood pulps and evaluation of oxygen

prebleaching options. PhD Thesis,

Department of Wood and Paper

Science, NC State University, Raleigh

NC.

115 Secrist, R.B., R.P. Singh, Kraft pulp

bleaching. II. Studies on the ozonation

of chemical pulps. Tappi, 1971; 54(4):

581–584.

116 Lindholm, C.-A., Effect of pulp consistency

and pH in ozone bleaching. Part

6. Strength properties. Nordic Pulp

Paper Res. J., 1990; 1: 22–27.

117 Axegard, P., et al., Bleaching of softwood

kraft pulps with H2O2, O3, and

ClO2. Tappi J., 1996; 79(1): 113–119.

118 Dillner, B., P. Tibbling, Optimum use of

peroxide and ozone in TCF bleaching.

In International Pulp Bleaching Conference.

Vancouver, BC: TAPPI Press,

1994.

119 Rydholm, S.A., Pulping Processes.

Malabar, Florida. Robert E. Krieger Publishing

Co., Inc., 1965: 971.

120 Liebergott, N., B.v. Lierop, Ozone

delignification of black spruce and hardwood

kraft, kraft-anthraquinone, and

soda-anthraquinone pulps. Tappi, 1981;

64(6): 95–99.

121 Berggren, R., et al., Fiber strength in

relation to molecular mass distribution

of hardwood kraft pulp. Degradation by

ozone and acid hydrolysis. Nordic Pulp

Paper Res. J., 2001; 16(4): 333–338.

122 Lachenal, D., N.B. Nguyen-Thi. TCF

bleaching – Which sequence to choose?

In Tappi Proceedings – Pulping Conference,

1993.

123 Baldinger, T., A. Potthast, Evaluation of

keto groups generated along the cellulose

chain from combined GPC-CCOA

measurement. CD Laboratory, Internal

Report: Vienna, 2004.

124 Lachenal, D., M.T. Taverdet, M. Muguet.

Improvement in the ozone bleaching of

kraft pulps. In International Pulp

Bleaching Conference. Stockholm, Sweden,

1991.

125 Lachenal, D., M. Muguet, Degradation

of residual lignin in kraft pulp with

ozone. Application to bleaching. Nordic

Pulp Paper Res. J., 1992; 1: 25–29.

126 Chirat, C., et al., (DZ) and (ZD) bleaching:

Fundamentals and application.

J. Pulp Paper Sci., 1997; 23: 289–292.

127 Homer, G., et al., State of the art ECF

bleaching. Part 3: Effects of ozone and

chlorine dioxide on bleaching and effluent

chemistry. In Emerging Technologies

Conference. Orlando, Florida,

1997.

128 Chirat, C., D. Lachenal, Other ways to

use ozone in a bleaching sequence.

Tappi J., 1997; 80(9): 209–214.

129 Lierop, B.v., R.M. Berry, B.P. Roy, Highbrightness

bleaching of softwood kraft

pulps with oxygen, ozone and peroxide.

J. Pulp Paper Sci., 1997; 23(9): 428–432.

130 Lachenal, D., J. Papadopoulos, Improvement

of hydrogen peroxide delignification.

Cellulose Chem. Technol., 1988; 22:

537–546.

131 Sixta, H., Influence of pulp properties

on the ozone bleaching performance.

R&D Lenzing AG, Lenzing, 2002.

References 925

Section 7.5.4

1 Staehelin, J., R.E. Buhler and J. Hoigne,

Ozone decomposition in water studied

by pulse-radiolysis. 2. OH and HO4 as

chain intermediates. J. Phys. Chem.,

1984; 88(24): 5999–6004.

2 Staehelin, J., J. Hoigne, Mechanism and

kinetics of decomposition of ozone in

water in the presence of organic solutes.

Vom Wasser, 1983; 61: 337–348.

3 Staehelin, J., J. Hoigne, Decomposition

of ozone in water – rate of initiation by

hydroxide ions and hydrogen-peroxide.

Environ. Sci. Technol., 1982; 16(10):

676–681.

4 Gurol, M.D., P.C. Singer, Kinetics of

ozone decomposition – a dynamic

approach. Environ. Sci. Technol., 1982;

16(7): 377–383.

5 Buhler, R.E., J. Staehelin, J. Hoigne,

Ozone decomposition in water studied

by pulse-radiolysis. 1. HO2/O2 -and

HO3/O3– as intermediates. J. Phys.

Chem., 1984; 88(12): 2560–2564.

6 Hoigne, J., H. Bader, W.R. Haag,

J. Staehelin, Rate constants of reactions

of ozone with organic and inorganiccompounds

in water. 3. Inorganic-compounds

and radicals.Water Res., 1985;

19(8): 993–1004.

7 Chirat, C., D. Lachenal, Effect of hydroxyl

radicals on cellulose and pulp and

their occurrence during ozone bleaching.

Holzforschung, 1997; 51(2):

147–154.

8 Kang, G.J., Y. Ni, A.R.P. van Heiningen,

Mechanism of cellulose protection in a

novel and selective ozone pulp bleaching

process. Annual Meeting – Technical

Section, Canadian Pulp and Paper

Association, Preprints, 1996.

9 Kishimoto, T., F. Nakatsubo, Non-chlorine

bleaching of kraft pulp. II. Ozonation

of methyl 4-O-ethyl-beta-D-glucopyranoside.

Quantitative analysis of

reaction products. Holzforschung, 1996;

50(4): 372–378.

10 Kishimoto, T., F. Nakatsubo, Non-chlorine

bleaching of kraft pulp. V. Participation

of radical species in ozonation of

methyl 4-O-ethyl-beta-D-glucopyranoside.

Holzforschung, 1998; 52(2):

185–190.

11 Lemeune, S., J.M. Barbe, A. Trichet,

R. Guilard, Degradation of cellulose

models during an ozone treatment.

Ozonation of glucose and cellobiose

with oxygen or nitrogen as carrier gas at

different pH. Ozone: Science and Engineering,

2000: 447–460.

12 Lewin, M., Oxidation and aging of cellulose.

Macromolecular Symposia, 1997;

118: 715–724.

13 King, J.E., A.R.P. van Heiningen, Effect

of pulp species and pretreatment on the

rates of delignification and cellulose

degradation during ozone bleaching.

Pulp Paper Can., 2003; 104(10): 38–42.

14 Magara, K., T. Ikeda, Y. Tomimura,

S. Hosoya, Accelerated degradation of

cellulose in the presence of lignin during

ozone bleaching. J. Pulp Paper Sci.,

1998; 24(8): 264–268.

15 Kang, G.J., Y. Ni, A.R.P.V. Heiningen,

Further understanding on the cause of

cellulose degradation during ozone

bleaching. Appita, 2001; 13(4): 1–5.

16 Johansson, E.E., J. Lind, S. Ljunggren,

Aspects of the chemistry of cellulose

degradation and the effect of ethylene

glycol during ozone delignification of

kraft pulps. J. Pulp Paper Sci., 2000;

26(7): 239–244.

17 Zhang, X.Z., Y. Ni, A. van Heiningen,

Kinetics of cellulose degradation during

ozone bleaching J. Pulp Paper Sci., 2000;

26(9): 335–340.

18 Magara, K., T. Ikeda, Y. Tomimura,

S. Hosoya, Accelerated degradation of

cellulose by lignin during ozonolysis.

Mokuzai Gakkaishi, 1994; 40(10):

1152–1154.

19 Sakai, K., J.M. Uprichard, Ozone degradation

of cellulose model compounds.

J. Faculty Agric. Kyushu University, 1991;

36(1–2): 45–53.

20 Pan, G.Y., C.L. Chen, J.S. Gratzl, and

H.M. Chang, Model-compound studies

on the cleavage of glycosidic bonds by

ozone in aqueous-solution. Res. Chem.

Intermediates, 1995; 21(3–5): 205–222.

21 Zhang, X.Z., G.J. Kang, Y. Ni,

A.R.P. van Heiningen, A. Mislankar,

A. Darabie, D. Reeve, Initial delignification

and cellulose degradation of con926

7Pulp Bleaching

ventional and ethanol-assisted ozonation.

J. Wood Chem. Technol., 1998;

18(2): 129–157.

22 Zhang, X.Z., G.J. Kang, Y. Ni,

A.R.P. van Heiningen, Delignification

and cellulose degradation rates during

novel and conventional ozone bleaching.

Abstracts, Papers Am. Chem. Soc.,

1996; 211: 199-CELL.

23 Roncero, M.B., M.A. Queral, J.F. Colom,

T. Vidal, Why acid pH increases the

selectivity of the ozone bleaching processes.

Ozone Sci. Eng., 2003; 25(6):

523–534.

24 Staehelin, J., J. Hoigne, Decomposition

of ozone in water in the presence of

organic solutes acting as promoters and

inhibitors of radical chain reactions.

Environ. Sci. Technol., 1985; 19(12):

1206–1213.

25 Pan, G.Y., C.-L. Chen, H.-M. Chang,

J.S. Gratzl, Studies on ozone bleaching.

I. The effect of pH, temperature, buffer

systems and heavy metal-ions on stability

of ozone in aqueous solution J. Wood

Chem. Technol., 1984; 4(3): 367–387.

26 Parthasarathy, V.R., R.C. Peterson.

Ozone Bleaching. Part I. The decomposition

of ozone in aqueous solution –

Influence of pH, temperature and transition

metals on the rate kinetics of

ozone decomposition. In Tappi Symposium

Notes – Oxygen Delignification,

1990.

27 Hoigne, J., H. Bader, Rate constants of

reactions of ozone with organic and

inorganic-compounds in water. 1. Nondissociating

organic compounds. Water

Res., 1983; 17(2): 173–183.

28 Hoigne, J., H. Bader, Rate constants of

reactions of ozone with organic and

inorganic-compounds in water. 2. Dissociating

organic compounds.Water Res.,

1983; 17(2): 185–194.

29 Gierer, J., The chemistry of delignification.

A general concept. Part II. Holzforschung,

1982; 36(1): 55–64.

30 Gierer, J., Formation and involvement

of superoxide (O2_–/HO2_) and hydroxyl

(OH_) radicals in TCF bleaching processes:

A review. Holzforschung, 1997;

51(1): 34–46.

31 Ragnar, M., T. Eriksson, T. Reitberger,

Radical formation in ozone reactions

with lignin and carbohydrate model

compounds. Holzforschung, 1999; 53(3):

292–298.

32 Ragnar, M., T. Eriksson, T. Reitberger,

P. Brandt, M. Ragnar, A new mechanism

in the ozone reaction with lignin

like structures. Holzforschung, 1999;

53(4): 423–428.

33 Ek, M., J. Gierer, K. Jansbo, Study on

the selectivity of bleaching with oxygencontaining

species. Holzforschung, 1989;

43(6): 391–396.

34 Chirat, C., D. Lachenal, Effect of ozone

on pulp components application to

bleaching of kraft pulps. Holzforschung,

1994; 48: 133–139.

35 Soteland, N., Some attempts to characterize

the oxidized lignin after ozone

treatment of western hemlock groundwood.

Part II. Norsk Skogindustri., 1971;

5: 135–139.

36 Plonka, A.M., J. Rutkowski,

R. Szopinski, Changes of the chromophore

system in sulfate pine pulp treated

with ozone. Cellulose Chem. Technol.,

1987; 21(5): 535–541.

37 Ni, Y., G.J. Kang, A.R.P. van Heiningen,

Are hydroxyl radicals responsible for

degradation of carbohydrates during

ozone bleaching of chemical pulp?

J. Pulp Paper Sci., 1996; 22(2): J53–J57.

38 Kang, G.J., Y.J. Zhang, Y.G. Ni,

A.R.P. van Heiningen, Influence of lignins

on the degradation of cellulose during

ozone treatment. J. Wood Chem.

Technol., 1995; 15(4): 413–430.

39 Zhang, Y., G. Kang, Y. Ni,

A.R.P. van Heiningen, Degradation of

wood polysaccharide model compounds

during ozone treatment. J. Pulp Paper

Sci., 1997; 23(1): J23–J27.

40 Olkkonen, C., H. Tylli, I. Forsskahl,

A. Fuhrmann, T.Hausalo, T. Tamminen,

B. Hortling, J. Janson, Degradation of

model compounds for cellulose and

ligno-cellulosic pulp during ozonation

in aqueous solution. Holzforschung,

2000; 54(4): 397–406.

aa Hewes, C. G., R. R. Davison, Kinetics of

Ozone Decomposition and Reaction

with Organics in Water. Aiche Journal,

1971; 17(1): 141–&.

bb Alder, M. G., G. R. Hill. The Kinetics

and Mechanism of Hydroxide Ion CataReferences

927

lyzed Ozone Decomposition in Aqueous

Solution. Journal of the American Chemical

Society, 1950; 72(5): 1884–1886.

xx Zhang, X.-Z., Y. Ni, A. van Heiningen,

Kinetics of Cellulose Degradation During

Ozone Bleaching. J. Pulp Paper Sci.,

2000; 26(9): 335–339.

yy Chirat, C., D. Lachenal, Effect of hydroxyl

radicals on cellulose and pulp and

their occurrence during ozone bleaching.

Holzforschung 1997; 51(2): 147–154.

Section 7.6

1 Thenard, L.J., Ann. Chim. Phys., 1818; 8:

306.

2 Schumb, W.C., C.N. Satterfield,

R.L. Wenworth, Hydrogen Peroxide.

Reinhold Publ. Co.: New York, 1955: 1 8.

3 Berthelot, H., Compt. Rend, 1878; 86: 71.

4 BASF, in DRP 649234, 1934.

5 BASF, in DRP 6583767, 1935.

6 Goor, G., Hydrogen peroxide: Manufacture

and industrial use for production of

organic chemicals. In Catalytic Oxidations

with Hydrogen Peroxide as Oxidant,

G. Strukal, Ed. Kluwer Academic Publishers,

1992: 13–43.

7 Greenwood, N.N., A. Earnshaw, Chemie

der Elemente. VCH, 1988.

8 Takagi, J., K. Ishigure, Thermal decomposition

of hydrogen peroxide and its

effect on reactor water monitoring of

boiling water reactors. Nuclear Sci. Eng.,

1985; 89: 177–186.

9 Gierer, J., The chemistry of delignification.

A general concept. Part II. Holzforschung,

1982; 36(2): 55–64.

10 Gellerstedt, G., I. Pettersson, Chemical

aspects of hydrogen peroxide bleaching.

Part II. The bleaching of kraft pulps.

J. Wood Chem. Technol., 1982; 2(3):

231–250.

11 Gierer, J., Chemistry of delignification.

2. Reactions of lignins during bleaching.

Wood Sci. Technol., 1986; 20(1):

1–33.

12 Gierer, J., The chemistry of delignification.

A general concept. Part II. Holzforschung,

1982; 36(1): 55–64.

13 Duarte, A.P., D. Lachenal, Hydrogen

peroxide production during oxygen

bleaching of Eucalyptus globulus kraft

pulp – origin of cellulose degradation.

Pap. Puu, 2002; 84(4): 275–277.

14 Barton, D.H.R., D.T. Sawyer. O2 and

HOOH activation. In The Activation of

Dioxygen and Homogeneous Catalytic

Oxidation. Texas A&M University, College

Station: Plenum Press, 1993.

15 Brooks, R.E., S.B. Moore, Alkaline

hydrogen peroxide bleaching of cellulose.

Cellulose, 2000; 7: 263–286.

16 Buda, F., et al., DFT Study of the Active

Intermediate in the Fenton Reaction.

Chemistry – AEuropean Journal, 2001.

7(13): 2775–2783.

17 Nunn, J.R., M.J.v.d. Linde. The protective

action of magnesium in oxygen

bleaching of pulp. Part 1: The complexing

of methyl-alpha-D-glucopyranoside

with magnesium ions. In First International

Symposium on Delignification

with Oxygen Ozone and Peroxides.

Raleigh, North Carolina, USA: North

Caroline State University, 1975.

18 Qiu, Z., Improvement in hydrogen peroxide

bleaching by decreasing manganese-

induced peroxide decomposition.

In The University of New Brunswick.

The University of New Brunswick: Fredericton,

2000: 88.

19 Wiklund, L., L.-O. Ohman, J. Liden,

Solid solution formation between

Mn(II) and Mg(II) hydroxides in alkaline

aqueous solution. Nordic Pulp Paper

Res. J., 2001; 16: 240–245.

20 Reitberger, T., et al., Involvement of oxygen-

derived free radicals in chemical

and biochemical degradation of lignin.

In Oxidative Delignification Chemistry,

D.S. Argyropoulos, Ed. American

Chemical Society, Oxford University

Press: Washington, DC, 2001: 255–271.

21 Lapierre, L., R. Berry, J. Bouchard, The

effect of magnesium ions and chelants

on peroxide bleaching. Holzforschung,

2003; 57(6): 627–633.

22 Gierer, J., The chemistry of delignification.

A general concept. Part I. Holzforschung,

1982; 36(1): 43–51.

23 Gierer, J., F. Imsgard. The reactions of

lignin with oxygen and hydrogen peroxide

in alkaline media. In First International

Symposium on Delignification

with Oxygen Ozone and Peroxides.

928 7Pulp Bleaching

Raleigh, North Carolina, USA: North

Carolina State University, 1975.

24 Heuts, L., G. Gellerstedt, Oxidation of

guaiacylglycerol-beta-guaiacyl-ether

with alkaline hydrogen peroxide in the

presence of kraft pulp. Nordic Pulp

Paper Res. J., 1998; 13(2): 107–111.

25 Gellerstedt, G., L. Heuts, Changes in

the lignin structure during a totally

chlorine free bleaching sequence. J. Pulp

Paper Sci., 1997; 23(7): J335–J340.

26 Liu, S.J., Chemical kinetics of alkaline

peroxide brightening of mechanical

pulps. Chem. Eng. Sci., 2003; 58(11):

2229–2244.

27 Gierer, J., (O2_-/HO2_) and hydroxyl

(OH_) radicals in TCF bleaching processes:

A review. Holzforschung, 1997;

51(1): 34–46.

28 Gierer, J., Formation and involvement

of superoxide (O2./HO2.) and hydroxyl

(OH.) radicals in TCF bleaching processes:

A review. Holzforschung, 1997;

51(1): 34–46.

29 Gierer, J., The interplay between oxygen-

derived radical species in the

delignification during oxygen and

hydrogen peroxide bleaching. In Lignin:

Historical, Biological, and Materials

Perspectives. ACS, 2000: 422–446.

30 Gierer, J., The interplay between oxygen-

derived radical species in the

delignification during oxygen and

hydrogen peroxide bleaching. ACS Symposium

Series, 1999: 422–446.

31 Gierer, J., K. Jansbo, T. Reitberger, Formation

of hydroxyl radicals from hydrogen-

peroxide and their effect on bleaching

of mechanical pulps. J. Wood Chem.

Technol., 1993; 13(4): 561–581.

32 Abbot, J., et al., The influence of manganese

and magnesium on alkaline peroxide

bleaching of radiata pine thermomechanical

pulp. Appita J., 1992; 45(2):

109.

33 Brelid, H., T. Friberg, R. Simonson,

TCF bleaching of softwood kraft pulp.

Part 3. Ion exchange of softwood kraft

pulp prior to oxygen delignification.

Doktorsavhandlingar vid Chalmers

Tekniska Hogskola, 1998.

34 Brelid, H., T. Friberg, R. Simonson,

TCF bleaching of softwood kraft pulp.

Part 4. Removal of manganese from

wood shavings prior to cooking. Doktorsavhandlingar