Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Текст лаб по физике строение вещества.doc
Скачиваний:
23
Добавлен:
14.11.2018
Размер:
6.78 Mб
Скачать

Выполнение работы

Перед выполнением работы внимательно изучите с экспериментальную установку, состоящую из измерительной ячейки и измерительного блока. На передней панели измерительного блока (рис.4) расположены цифровые вольтметр, милливольтметр и секундомер, тумблеры «Сеть», «Время» и «Нагрев», переключатель «Режим измерений», кнопка «Сброс», устанавливающая нулевое значение на секундомере.

Рис.4 Передняя панель измерительного блока

До проведения измерений внесите в конспект значения сопротивлений и в цепях нагревателя и термометра соответственно, сопротивление термометра при t = 0 C, которые приведены на рабочем месте для каждой установки. Для записи результатов измерений подготовьте следующую таблицу.

Таблица 2

№№

Время, с

Uт, мВ

(переключатель в положении 3)

Uтт, мВ

(переключатель в положении 2)

Uнт, мВ

(переключатель в положении 1)

Uн, В

1

0

2

100

3

200

и т.д.

Перед включением установки (тумблер «Сеть») необходимо установить в положение «Выкл» тумблеры «Нагрев» и «Время». После включения установки показание вольтметра и секундомера должны быть нулевыми. Устанавливая переключатель «Режим измерений» в положения 3 и 2 измерьте Uт и Uтт и заносите их в таблицу. Затем включается секундомер и измерения Uт и Uтт повторяются с интервалом 100 с. Для повышения достоверности снимаемых данных при подходе к очередной временной отметке в первую очередь измеряют напряжение на термометре, поскольку именно этой величина определяется изменение температуры. Хотя токи Iт и Iн задаются источниками стабильного тока, их значения, а также напряжение Uн необходимо контролировать в процессе проведения эксперимента.

Проведя измерения для 15 ÷ 20 временных отметок, определяющих начальный температурный ход, в момент времени, который соответствует последней из них и должен быть записан в конспект, с помощью тумблера «Нагрев» включается питание нагревателя. На вольтметре высвечивается показания, соответствующие Uн. Нагрев рекомендуется проводить в течение 600  800 с, т.е. снять при нагревании 6 ÷ 8 точек, выполняя необходимые измерения. После этого нагрев выключается в момент времени, соответствующий одной из временных меток, которую также следует записать. Далее следует продолжить измерения величин, определяющих температурных ход после нагрева, снимая показания приборов для 15 ÷ 20 точек с интервалом 100 с.

В процессе обработки результатов эксперимента для каждой временной отметки рассчитывается температура образца по измеренным значениям Uт, Uтт, известным величинам Rтт и R0 (формула (3)) и строится график зависимости температуры от времени. Разность температур ΔТ, как говорилось выше, определяется путем линейной экстраполяции температурных ходов до и после нагрева к моменту времени, соответствующему середине нагрева. Количества переданного образцу тепла находится по формуле (2), используя измеренные значения Uн, Uнт , известное значение сопротивления Rнт и время нагрева τ. На основе вычисленных и ΔТ рассчитывается молярная теплоемкость образца по формуле (4).

Для упрощения процедуры нахождения и повышения точности вычислений в работе предусмотрена компьютерная обработка данных. При обращении к соответствующей программе на экране монитора высвечивается таблица, аналогичная таблице 2, а также ячейки, в которые заносятся параметры установки. После ввода результатов измерений методом наименьших квадратов осуществляется линейная интерполяция температурных ходов до и после нагрева, расчет ΔТ и молярной теплоемкости образца с, которая сравнивается с величиной 3R, соответствующей закону Дюлонга и Пти.

Справочные данные

Материал

Cu

Al

Плотность , г/см3

8,960

2,699

Молярная (атомарная) масса , г/моль

63,55

26,98

Литература

1. Савельев И.В. Курс общей физики. - М.: Астрель, АСТ. 2003 – кн.3, § 4.5

Лабораторная работа № 3

Изучение термоэлектронной эмиссии и определение работы выхода

Цель работы: исследование термоэлектронной эмиссии с поверхности катода ва­куумного диода и определение работы выхода материала катода.

Теоретическая часть

Термоэлектронная эмиссия – явление испускания электронов с поверхности нагре­того металла. Для получения заметной величины термоэлектронной эмиссии необходимо нагреть металл до температуры, значительно выше комнатной (20002500 К).

Металл представляет собой кристаллическое тело, в уз­лах решетки которого расположены положительно заряженные ионы, между которыми свободно перемещаются электроны, оторвавшиеся от атомов (свободные электроны). Вблизи поверх­ности существуют силы, действующие на электроны и направленные внутрь металла. Они возникают вследствие притяжения между электронами и положительными ионами решетки. Таким образом, для того чтобы электроны могли покинуть поверхность металла, им необходимо сообщить некоторую дополнительную энергию.

Вследствие квантовых эффектов энергия электронов внутри металла может прини­мать только дискретные значения, причем обладать одинаковой энергией с учетом спина электрона могут не более двух электронов. Энергетическая диаграмма электронов в ме­талле (в потенциальной яме) при температуре Т = 0 К изображена на рис.1. Сплошными линиями изображены энергетические уровни, занятые электронами (на каждом уровне  два электрона), а пунктирными линиями  свободные уровни. Энергия последнего уровня, заня­того электронами, называется уровнем Ферми или энергией Ферми ЕF.

Рис.1. Энергетическая диаграмма электронов в металле при абсолютном нуле, - энер­гия, соответствующая дну потенциальной ямы (зоны проводимости), - энергия Ферми

Для удаления электрона за пределы металла разным электронам нужно сообщить, очевидно, неодинаковую энергию. Наименьшая энергия, необходимая электрону для того, чтобы покинуть поверхность металла в вакууме называется работой вы­хода А электрона из металла. Ее часто обозначают как е, где = 1,61019 Кл  элементар­ный заряд,   так называемый потен­циал выхода.

Из диаграммы следует, что в соответствии с определением работы выхода ее вели­чина при Т = 0 К

.

Определение работы выхода распространяется и на температуры, отличные от абсолютного нуля. При этом следует учесть, что энергия Ферми и глубина потенциальной ямы зависят от температуры. Это приводит к тому, что работа выхода также зависит от температуры. Но эта зависимость слабая. В данной работе мы пренебрегаем зависимостью работы выхода от температуры.

Распределение электронов в металлах подчиняется распределению Ферми-Дирака, согласно которому вероятность того, что состояние с энергией при температуре Т занято электроном, равна

где  постоянная Больцмана,  абсолютная температура. Вид этого распределения показан на ри­с.2.

Рис. 2. Распределение электронов в металле по энергиям для температур и

При низких температурах количество электронов, обладающих энергией, достаточ­ной для выхода из металла, незначительно. При повышении температуры доля электронов, имеющих энергию, превышающую энергию Ферми, увеличивается. К тому же максимальная энергия таких электронов также увеличивается (см. рис.2). Она может стать настолько большой, что некоторые из электронов могут преодолеть энергетический барьер и выйти наружу. Если в окружающем вакууме существует электрическое поле, на­правленное к поверхности металла, то оно будет увлекать вышедшие электроны, и через вакуум потечет термоэлектронный ток.

Для наблюдения термоэлектронной эмиссии удобна вакуумная лампа с двумя элек­тродами  вакуумный диод. Такие лампы применяются в радиотехнике для выпрямления переменного тока.

Катодом лампы служит проволока (нить) из тугоплавкого металла (вольфрам, мо­либден и др.), накаливаемая электрическим током. Получить сильные термоэлектронные токи с катодами из этих металлов можно лишь при очень высоких температурах накала, т.к. работа выхода из тугоплавких металлов относительно велика ( А = 4,52 эВ для вольфрама ). Между тем на практике весьма существенно снизить рабочую температуру ка­тода для уменьшения затрат энергии и увеличения срока службы лампы. Это достигается созданием на поверхности катода тонкого покрытия ионами щелочноземельных метал­лов (толщиной в несколько атомных слоев). Покрытие сильно понижает работу выхода и тем самым увеличивает эмиссионную способность катода.