Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TMO_Контрольная(Posobie) .doc
Скачиваний:
74
Добавлен:
11.11.2018
Размер:
2.91 Mб
Скачать

Вариант 2 (к.Р. №2)

Задачи

Задача 1 (к темам 4-8). По трубке с внутренним диаметром d= 16 мм длиной l = 2,1 м течет (горячее) жидкое масло, отдающее теплоту через стенку трубы, охлаждаемую извне. Расход масла по трубке G = 0,0091 кг/с; температура масла на входе tж.1 = 90°С, на выходе tж.2 = 30 ° С; температуру стенки принять постоянной по длине трубки и равной заданному значению tc.

Вычислить заданные числа подобия, приняв в качестве определяющей температуры заданное ее значение, в качестве определяющего размера принять внутренний диаметр трубки, в качестве расчетного температурного напора - среднюю (логарифмическую) разность температур между жидкостью и стенкой.

Представить график изменения температур жидкости и стенки по длине трубки, указать на графике заданные значения определяющей температуры и расчетного температурного напора.

Данные, необходимые для выбора своего варианта условиям задачи, приведены в табл. 5.2.

Таблица 5.2.

Заданные величины

Варианты задачи

1

2

3

4

5

6

7

8

9

10

Род масла

МС-20

МК

АМТ-300

Температура стенки, ° С

14

15

16

14

15

16

14

15

16

14

Число подобия

Re

Re

Re

Pe

Pe

Re

Re

Pe

Pe

Pe

Его определяющая температура

Средняя температура

жидкости

Средняя температура

пограничного слоя

Число подобия

Nu

St

Nu

St

Nu

St

Nu

St

Nu

St

Методические указания даны в первом варианте. Физические свойства масел приведены в приложении 3.

Задача 2 (к темам 4-8). Определить мощность теплового потока, характеризующего конвективную теплоотдачу к струе жидкости, протекающей по трубе заданного диаметра длиной 3 м. Обосновать выбор расчетного уравнения, применяемого при решении задачи.

Данные, необходимые для решения этой задачи, выбрать из табл.6.2.

Наименование

Варианты задач

11

12

13

14

15

16

17

18

19

20

Внутренний диаметр

трубы, м

0,04

0,04

0,04

0,04

0,04

0,08

0,08

0,08

0,08

0,08

Температура стенки

трубы,° С

-5

15

30

120

90

-5

15

60

85

45

Средняя температура жид-кости,°С

0

10

20

30

30

20

10

10

90

50

Род жидкости

Воздух

Вода

Вода

Воздух

Воздух

Воздух

Вода

Воздух

Вода

Вода

Средняя скорость потока, м/с

10

3,9

5

6

4

2,25

2,8

1,9

0,55

1,2

Методические указания даны в первом варианте.

Задача 3 (к темам 4-9). Определить мощность теплового потока, характеризующую конвективную теплоотдачу от поверхности объекта - трубы заданного диаметра длиной 4,0 м или вертикальной стенки заданной высоты при ширине 10 м. Обосновать выбор безразмерного уравнения, примененного для решения задачи. Данные, необходимые для решения своего варианта задачи, выбрать из табл.7.2.

Методические указания даны в первом варианте.

Таблица 7.2.

Наименование

Варианты задач

21

22

23

24

25

26

27

28

29

30

Конвективный тепло-обмен харак-ся условиями свободной конвекции

вблизи

горизонтальной

трубы

вблизи

вертикальной

стенки

Диаметр трубы, м

0,11

0,12

0,13

0,14

0,15

-

-

-

-

-

Высота стенки, м

-

-

-

-

-

1,6

1,7

1,8

1,9

2,0

Температура на поверхности объекта

(трубы стенки) tc,°С

90

-10

30

-5

15

120

90

60

85

45

Средняя температура жидкости, °С

30

20

20

15

10

15

30

180

90

50

Род жидкости

Вода

Воздух

Вода

Воздух

Вода

Воздух

Воздух

Воздух

Вода

Вода

Вариант 3 (К.р. № 2)

Методические указания

Задачи 1,2. Необходимо помнить, что у подобных процессов в модели и образце одноименные определяющие безразмерные числа имеют одинаковые числовые значения.

Задачи 3, 5, 7, 8, 10. В таблицах обычно приводятся значения динамического и кинематического коэф­фициентов вязкости газов при давлении в 1 физическую атмосферу ().

Для решения указанных задач надо знать величину кинематического коэффициента вязкости v при давле­ниях газов, отличных от р = 1 атм.

В этом случае v определяется по формуле:

где — динамический коэффициент вязкости (не зависит от давления и определяется из таблиц при дан­ной в условии задач температуре), —плотность, кото­рую следует определить для данных р и Т на основании уравнения состояния идеального газа.

Учесть, что уравнение Менделеева — Клапейрона в системе единиц СИ имеет вид:

где давление P выражено в , удельный объем в , М – масса R – газовая постоянная в , Т – абсолютная температура газов в К.

Задачи 6,10. Необходимо воспользоваться методикой получения эмпирических формул (§6.6.[1]).

Задача 13. Учесть, что для данных в задаче значений показатель степени в формуле равен n=1/3.

Задача 18. При решении задачи учесть, что критериальной зависимостью для даиных условий является:

.

Задачи

1. Определить значение кинематического коэффи­циента вязкости и скорости течения жидкости в модели, в которой исследуется теплообмен при вынужденной конвекции. Коэффициент температуропроводности жид­кости в модели .

В образце, представляющем собой трубу диаметром 0,4 м, протекает воздух, имеющий температуру 170°С и давление 1 бар.

Скорость течения воздуха 80 м/с. Диаметр трубы модели в 5 раз меньше диаметра трубы образца.

2. Необходимо опытным путем определить распределение температур в длинном стальном вале диаметром 400 мм через 2 ч после загрузки его в печь.

Коэффициенты теплопроводности и температуропроводности стали равны соответственно:

Коэффициент теплоотдачи к валу печи .

Исследование необходимо провести на модели вала, выполненной из легированной стали. Для модели:

;.

Определить диаметр модели вала и промежуток времени через который необходимо измерить распреде­ление температур в модели после загрузки ее в печь. 3. В трубе (образце) движется азот, имеющий дав­ление 9,8 бар и температуру 180°С. Скорость движения 25 м/с.

Чему должна быть равна скорость воды в гидродина­мической модели, размеры которой составляют 1/20 от размеров образца? Температура воды 15°С.

4. Определить значение кинематического коэффи­циента вязкости и скорости течения жидкости в модели, в которой исследуется теплообмен при вынужденной конвекции. Коэффициент температуропроводности жидкости в модели 0,8 10 -6м2/с.

В образце, представляющем собой трубу диаметром 0,3 м, протекает воздух, имеющий температуру 190°С и давление 1 бар. Скорость течения воздуха 70м/с. Диаметр трубы модели в 6 раз меньше диаметра трубы образца.

5. В образце (трубе) движется воздух со скоростью 15 м/с. Давление воздуха 3 бар и температура 330°С. Чему должна быть равна скорость воды в гидродинамической модели, линейные размеры которой в 20 раз больше раз­меров образца?

Температура воды 20°С.

6. В опытах по изучению теплообмена при свободной конвекции между нагретой цилиндрической трубой и окружающим воздухом были получены следующие данные:

Диаметр трубы 0,03 м. Температура воздуха вдали от трубы 20°С.

Вычислить значения С и n в критериальной формуле:

7. В трубе диаметром 60 мм движется воздух со скоростью 17 м/с. Давление воздуха 5 бар и температура 350°С. Каков должен быть диаметр трубы гидродинами­ческой модели, в которой течет вода, имеющая скорость 5 м/с и температуру 10°С?

8. В образце, представляющем собой трубу, движется воздух со скоростью 25 м/с. Давление воздуха 3 бар и температура 275°С. Чему должна быть равна скорость воды в гидродинамической модели, линейные размеры которой в 15 раз больше размеров образца? Температура воды 30°С.

9. На воздушной модели парового котла производилось изучение теплоотдачи при вынужденной конвекции. Для одного из газоходов модели при различных скоростях воздуха, были получены следующие значения коэффициента теплоотдачи:

2,0

3,14

4,65

8,8

50,5

68,6

90,7

141,2

Средняя температура воздуха, проходящего через модель, 30°С. Диаметр трубок модели d =12,5 мм. На основе данных, полученных на модели, определить значения С и п в критериальной формуле:

.

10. В образце, представляющем собой трубу, течет вода со скоростью 25 м/c.

Температура воды 20°С. Чему должна быть равна скорость воздуха в гидродинамической модели, размеры которой в 10 раз больше размеров образца?

Давление воздуха 4 бар, температура 180°С.

11. Электронагреватель из нихромового провода диа­метром 1 мм, охлаждается свободным потоком воздуха, температура которого вдали от провода равна 20°С.

Найти наибольшую силу тока, который можно про­пустить через нагреватель, чтобы температура провода не превышала 1000 °С.

Удельное сопротивление нихрома: . Излучение тепла при расчете не учитывать.

12. Рассчитать коэффициент теплоотдачи при сво­бодной конвекции от вертикальной плиты к окружаю­щему воздуху.

Высота плиты Н=2,2 м, температура поверхности плиты 120°С, температура воздуха вдали от поверхности 15°С.

13. Две трубы, имеющие одинаковые температуры поверхностей, охлаждаются свободным потоком воздуха.

Диаметр одной трубы в 20 раз превышает диаметр другой. Критерий GrРг для малой трубы равен 108.

Определить отношение коэффициентов теплоотдачи и отношение потерь тепла для этих труб.

14. Рассчитать коэффициент теплоотдачи для трубы, нагретой до температуры 85°С, в условиях свободного потока воды с температурой 10°С. Диаметр трубы d =50 мм.

15. Вычислить коэффициент теплоотдачи при свободной конвекции от горизонтальной плиты к окружаю­щему воздуху, если плита обращена теплоотдающей по­верхностью кверху.

Размеры плиты м2, температура поверхности плиты 120°С, температура воздуха вдали от плиты 15°С.

16. Найти потери тепла, приходящиеся на 1 пог. м паропровода за счет конвекции в течение 4 ч, если па­ропровод охлаждается свободным потоком воздуха, име­ющим температуру вдали от паропровода 20°С. Наружный диаметр паропровода 200 мм, температура его поверхности 190° С. Потери тепла излучением не учитывать.

17. Вычислить эквивалентный коэффициент теплопро­водности и плотность теплового потока через вертикальную щель шириной мм, заполненную воздухом. Температуры горячей и холодной поверхностей равны соответственно 220°С и 60°С.

18. Две горизонтальные трубы, имеющие одинаковые температуры поверхностей, охлаждаются свободным потоком воздуха. Диаметр первой трубы в 8 раз больше диаметра второй. Найти отношение коэффициентов теплоотдачи и отношение потерь тепла для труб , если известно, что для каждой из них число GrРг лежит в пределах 51022107.

19. Определить коэффициент теплоотдачи при свободной конвекции от горизонтальной плиты к окружающему воздуху, если плита обращена теплоотдающей поверхностью книзу.

Размеры плиты м2, температура поверхности плиты 110°С, температура воздуха вдали от плиты 20°С.

20. Электропровод диаметром d = 3 мм охлаждается свободным потоком воздуха. Температура провода рав­на 100°С, а температура воздуха вдали от провода 20°С.

Во сколько раз и в какую сторону изменится коэф­фициент теплоотдачи от провода, если его поместить в воду, сохранив температуры провода и теплоносителя без изменения? Как следует при этом изменить силу тока в проводе?

21. Определить коэффициент теплоотдачи при течении воды в трубе диаметром 8 мм и длиной 3 м, если средняя температура воды равна 70°С, средняя температура стенки трубы 20°С, а скорость воды 12 м/с.

22. Вычислить коэффициент теплоотдачи трубки диаметром 10 мм, омываемой поперечным потоком трансформаторного масла, движущегося со скоростью 0,25 м/с. Температура масла 80°С, средняя температура стенки трубки 20°С.

23. По горизонтальной трубке диаметром d=15 мм протекает вода. Расход воды ,ее темпе­ратура на входе в трубку 90°С. Средняя температура стенки 20°С.

Какую длину должна иметь трубка для того, чтобы на выходе из нее температура воды была равна 25°С?

24. Электропровод диаметром d = 4 мм охлаждается поперечным потоком воздуха, движущимся со скоростью 1,2 м/с.

Температура воздуха вдали от провода 20°С.

Вычислить коэффициент теплоотдачи от провода к воздуху.

25. В трубке движется вода со средней скоростью 2,5 м/с и температурой 50°С. Внутренний диаметр трубки 18 мм, ее длина 2 м. Средняя температура стен­ки трубки 15°С.

Определить коэффициент теплоотдачи от стенки трубки к воде.

26. Вычислить коэффициент теплоотдачи от стенки трубки паро-перегревателя к потоку перегретого пара. Внутренний диаметр трубки d= 25 мм, средняя скорость пара w = 18 м/с, средняя температура 400°С и среднее давление 40 бар.

27. Определить коэффициент теплоотдачи при тече­нии воздуха в трубе диаметром 9 мм и длиной 3 м. Средняя температура воздуха 60°С, средняя температура стенки трубы 30°С. Скорость воздуха 3 м/с.

28. По горизонтальной трубке диаметром d=17 мм протекает вода. Секундный расход воды , ее температура на входе 85°С, средняя тем­пература стенки 18°С.

Какую длину должна иметь трубка для того, чтобы на выходе из нее температура воды равнялась 25°?

29. Определить коэффициент теплоотдачи при дви­жении трансформаторного масла в трубке диаметром d=10 мм и длиной 1 м, если средняя температура мас­ла 70°С, температура стенки трубки 20°С, а скорость движения масла 1 м/с.

30. Вычислить коэффициент теплоотдачи при течении воды в трубе диаметром 10 мм и длиной 2 м. Средняя температура воды 60°С, средняя температура стенки трубы 18°С, скорость воды 10 м/с.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]