Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры защита от ЧС.docx
Скачиваний:
96
Добавлен:
28.10.2018
Размер:
2.9 Mб
Скачать

26.Методы регистрации ионизирующих излучений.

Сцинтиляционный метод. Сцинтилляции – это кратковременные световые вспышки, возникающие при воздействии ионизирующих излучений на некоторые вещества, называемые люминофорами (сцинтилляторами). В основе сцинтилляционного метода обнаружения излучений лежит явление люминесценции. Люминесцентное излучение исходит из сравнительно небольшого числа центров люминесценции – атомов, молекул или ионов, приходящих в возбужденное состояние под действием внешних причин, а затем при переходе возбужденного центра на более низкий энергетический уровень, испускающих квант люминесцентного излучения. Время, затрачиваемое на переход центра люминесцеции из возбужденного состояния на более низкий энергетический уровень, – одна из главных характеристик люминесцентного процесса. Если люминесцентное излучение после отключения источника его возбуждения прекращается примерно через 10–8 с, то такой вид люминесценции называют флуоресценцией. В течение 10–8 с находится в возбужденном состоянии. Другой вид люминесценции – фосфоресценция – характеризуется медленным спадом свечения после отключения источника возбуждения. Виды люминесценции различают и по способу ее возбуждения. Так, экран телевизора светится под падающим на него электронным пучком благодаря свечению люминофора, нанесенного на стенку экрана кинескопа. От веществ, применяемых в качестве сцинтилляторов, требуется, чтобы они давали сильные и равномерные вспышки, обладали высоким коэффициентом поглощения ионизирующих излучений, не поглощали значительно собственного излучения, имели небольшое время высвечивания. К таким люминофорам относится группа неорганических веществ: йодистый натрий NaI, йодистый цезий CsI, йодистый литий LiI, вольфраматы кадмия CdWO4 и кальция CaWO4 и сернистый цинк ZnS. Неорганические люминофоры обладают довольно большим временем высвечивания, примерно 10–6 c. В дозиметрических приборах для регистрации бета- и гаммаизлучений используют галогениды: йодистый натрий NaI, йодистый калий KI, йодистый литий LiI или йодистый цезий CsI, все активированные таллием ТI, а также вольфраматы кальция и кадмия: CaWO4, CdWO4. Для регистрации альфа-частиц используются люминофоры на основе сернистого цинка ZnS (или кадмия), активированного серебром или медью: ZnS(Ag), ZnS(Cu). Для регистрации нейтронов используется йодистый литий, активированный оловом LiI(Sn). В качестве сцинтилляторов используются также инертные газы: аргон, ксенон и др. Из органических веществ наибольшее применение получили такие, как антрацен, нафталин, стильбен, фенантрен, терфенил, дифенил. Органические и газовые сцинтилляторы характеризуются очень малым временем высвечения (10–8–10–9 с). 6.3.2. Химический метод. Этот метод обнаружения ионизирующих излучений основан на том явлении, что возникающие при воздействии излучений ионы и возбужденные атомы и молекулы вещества могут диссоциировать, образуя свободные радикалы. Эти ионы и радикалы вступают в реакцию между собой или другими атомами и молекулами, образуя новые вещества, появление и количество которых позволяет судить о наличии и количественной характеристике ионизирующих излучений. Вещества, воспринимающие энергию ионизирующих излучений и преобразующие ее в химическую энергию, могут находиться во всех трех агрегатных состояниях: газообразном, жидком и твердом. Этот метод используется в дозиметре ДП-70М. 6.3.3. Фотографический метод обнаружения ионизирующих излучений. Фоточувствительный слой представляет собой мелкие кристаллы галогенидов серебра, распределенные в желатине, нанесенные на прозрачную подложку. В общем случае на 1 см2 поверхности приходится 108–109 таких кристаллов, называемых зернами. Под воздействием ионизирующих излучений зерна превращаются в центры скрытого почернения. Последующий процесс проявления, заключающийся в воздействии на эти центры химическими реактивами, приводит к восстановлению серебра, которое выпадает в виде длинных тонких нитей, свернутых в комок и хорошо поглощающих свет. Место, где произошло образование металлического серебра, воспринимается как черная точка, а совокупность таких точек, расположенных близко друг к другу, – как черное пятно. Оставшиеся не подверженными воздействию излучений кристаллы галогенидов серебра растворяются в фиксирующих веществах. Чем больше доза воздействующих на фотослой излучений, тем больше степень его почернения. Сравнивая почернение пленки, которую носит человек, с контрольной, находят дозу излучения, воздействующую на человека. Почернение пленок, измеряемое в оптических плотностях почернения S, определяется выражением S = lg J0 / J, (6.1) где J0 – интенсивность светового пучка, падающего на пленку; J – интенсивность света, прошедшего через пленку. Плотность почернения фотослоя измеряется с помощью специальных приборов – денситометров и фотометров. Фотографический метод позволяет измерять дозы гамма- и нейтронных излучений в диапазоне от 0 до 10 Р с точностью до 0,1 Р, а при использовании специальных фоточувствительных слоев – до 20 000 Р. Важнейшим преимуществом фотографического метода перед всеми остальными является его документальность. Фоточувствительный слой, нанесенный на пленку, дает возможность длительно сохранять результат воздействовавшей на него дозы излучения. Этот метод позволяет получить практически любую чувствительность. Используемая для измерения доз пленка, даже будучи перемещенной в светонепроницаемую кассету, обладает весьма малыми размерами и весом. Изготовление фоточувствительных слоев несложно, а использование их не связано с применением энергетических источников и сложных электрических схем. Недостатки фотографического метода: чувствительность фотослоя к свету и необходимость обрабатывать его в полной темноте; сложный процесс определения доз, связанный с химической обработкой фотослоя (проявление, фиксация, неоднократная промывка, сушка) и последующим измерением плотности почернения. 6.3.4. Метод, основанный на проводимости кристаллов. Все валентные электроны, находящиеся в связанном состоянии в составе атомов, образующих кристаллическую решетку, обладают некоторой энергией. В кристаллах диэлектриков и полупроводников максимальная возможная энергия валентных электронов и минимальная возможная энергия свободных электронов разделены некоторым интервалом энергий: большим – для диэлектриков, меньшим – для полупроводников. Электроны с энергией, большей, чем у валентных, но меньшей, чем у свободных электронов, могут быть в кристаллах лишь тогда, когда в них хотя бы в небольшом количестве имеются посторонние примеси, нарушающие связи между атомами кристаллической решетки. Эти электроны легко могут переходить в свободное состояние. Такому переходу способствует воздействие на кристалл ионизирующих излучений. При поглощении ионизирующих частиц или квантов из атома кристалла выбиваются валентные электроны с большей энергией. Эти электроны, проходя через кристалл, затрачивают энергию на отрыв от атомов большого числа других вторичных электронов. Таким образом, в кристалле возникают свободные электроны, которые могут при наличии электрического поля образовать ток даже в кристалле, обладающем свойствами диэлектрика, и увеличить проводимость, а тем самым и ток, в кристалле полупроводника. В качестве веществ, кристаллы которых могут быть использованы для обнаружения и измерения различных характеристик ионизирующих излучений, используются кристаллы сернистого цинка, серы, ал маза, германия и др. Хорошие результаты дает применение сернистого кадмия, в зависимости от природы и концентрации примесей при температуре около 20С он может быть и диэлектриком, и полупроводником. Сернистый кадмий применяется как в виде монокристалла, так и в виде тонкой поликристаллической пленки. Монокристаллы наиболее удобны для исследований гамма-излучения, пленки – для исследований альфа- и бета-излучений. Кристаллы имеют размеры 3510 мм и меньше. На образование свободных электронов в кристаллах расходуется 3–10 эВ, что позволяет получить больший ток при одной и той же поглощенной энергии и является, следовательно, значительным преимуществом по сравнению с воздухом, где на образование пары ионов затрачивается 34 эВ. Достоинствами описанных кристаллов являются их простота, возможность получения с их помощью токов большой величины, высокая эффективность счета, малые размеры и малая стоимость. Поэтому их целесообразно использовать для изготовления малогабаритных и легких (переносных) приборов, медицинских зондов, которые предназначены для определения зараженности ран и других целей, дистанционных систем наблюдения за радиоактивным заражением местности и т. д. К серьезным недостаткам кристаллов относятся: большая инерционность их (до нескольких минут для установления показаний, соответствующих измеряемой величине), плохая воспроизводимость результатов, изменение чувствительности во времени, зависимость результатов измерений от энергии ионизирующих частиц. Значительно меньшей инертностью обладают кремниевые кристаллы с так называемой электронно-дырочной проводимостью. Это обстоятельство в сочетании с высокой чувствительностью, низкими напряжениями питания, малыми габаритами и большой надежностью делает перспективным применение их в дозиметрических приборах различного назначения. 6.3.5. Калориметрический (тепловой) метод. Энергия ионизирующих излучений, поглощенная в веществе, в конечном итоге превращается в тепло. Этот тепловой эффект используется в калориметрах для измерения активности вещества или мощности дозы. Для регистрации нейтронных потоков используются термоэлементы, стан которых покрыт бором. При калориметрических измерениях объекты, подвергающиеся облучению, должны находиться в термостатах. С помощью термопар и гальванометра определяются изменение температуры этих объектов под воздействием ионизирующих излучений и соответствующее этому изменению температуры количество поглощенного тепла, которое и позволяет производить измерения в общеэнергетических единицах и т. п. Этот метод характеризуется высокой точностью. Недостатки калориметрического метода состоят в том, что калориметры представляют собой громоздкую стационарную аппаратуру и их чувствительность мала. 6.3.6. Ионизационный метод. При ионизационном методе обнаружения и измерения различных характеристик ионизирующих излучений в качестве ионизирующей среды используются газы, в которых образующиеся ионы обладают большой подвижностью. Воздействуя на газовую среду электрическим полем, легко привести создаваемые излучением ионы в направленное движение. Возникающий при этом электрический ток не только является указанием на то, что газовая среда облучается, но и позволяет также судить об активности источников ионизирующих излучений, о создаваемой ими дозе и мощности дозы излучений. Ионизационная камера представляет собой устройство, состоящее из двух электродов, между которыми находится газовая среда – воздух. Корпус ионизационной камеры изготавливается из воздухо-эквивалентного материала, бакелита. Дешевые приборы имеют камеры из алюминия, атомный номер которого значительно отличается от эффективного атомного номера воздуха (эффективный атомный номер алюминия 13, воздуха – 7,64). Толщина стенок камеры должна быть не меньше, чем длина пробега вторичных электронов, обладающих наибольшей энергией, благодаря чему в камере создается электронное равновесие, присущее данному материалу. В измерительной аппаратуре ионизация газовой среды происходит в устройствах, предназначенных для восприятия энергии ионизирующих излучений и преобразования ее в энергию электрического тока. Такие устройства называются воспринимающими (или детекторами излучений). К ним относятся ионизационные камеры и газоразрядные счетчики.

Соседние файлы в предмете Защита населения и объектов от ЧС