Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену по неврологии.docx
Скачиваний:
1964
Добавлен:
18.06.2018
Размер:
503.97 Кб
Скачать

96. Современные представления о молекулярной организации генома. Понятие о гене как о структурно-функциональной единице наследственности. Мутации. Виды мутаций. Их биологическое значение.

Ген - это структурная, функционально неделимая единица наследственной информации, участок молекулы ДНК, кодирующий синтез какой-либо макромолекулы (и-РНК, р-РНК, т-РНК, белок, гликоген, гликопептид и т.д.). Согласно экзонно-интронной модели организации генетического

материала, ген представляет собой определенный участок ДНК, имеющий слева 5~ - конец (начало гена) и справа 3~- конец (конец гена), между которыми расположены экзоны и интроны.

СХЕМА: тонкая структура гена .

При исследовании ДНК перед транскрибируемыми участками были обнаружены нетранскрибируемые, которые были названы "промоторы", т.е. инициаторы транскрипции (связывают РНК-полимеразу). Установлено, что мутации в области промоторов могут резко снизить способность гена к экспрессии. Кроме того, выделены генные последовательности, усиливающие (энхансеры) и замедляющие (силансеры) ход транскрипции. В конце гена расположены последовательности – участок терминации транскрипции («стоп»-сигнал)

В конце 70-х гг. установлено, что внутри гена имеются чередующиеся кодирующие или смысловые (экзоны) и некодирующие (интроны) последовательности.

Имеются данные о том, что мутации в интронах, вплоть до их полной делеции, могут никак не сказываться на функции гена. Наряду с этим, известно, что интроны могут выполнять особую функциональную роль: они могут содержать специальные гены. Таким образом, роль интронных последовательностей еще предстоит изучить. Пример :

ген VIII фактора свертываемости крови человека (187 тыс. п.н.), дефекты в котором приводят к гемофилии "А". В самом большом интроне гена (39 т.п.н.) присутствуют последовательн в интрон гена. Транскрипция идет с ДНК оппозитной той, что несет интрон.

Самый короткий ген - ген бетта-глобина - 1100 п.н., 3 экзона (90, 222, 126 п.н.) и 2 интрона (116, 646 п.н.). Ген фермента фенилаланин-4-гидроксилазы, мутации в котором приводят к развитию фенилкетонурии, относится к средним генам - 90 - 125 тыс. п.н., 13 экзонов и 12 интронов, причем доля интронов достигает 90%. Один из самых протяженных генов - ген дистрофина: 2 млн. 300 тыс. п.н., около 85 экзонов.

Для систематизации информации о генах созданы компьютерные банки: Genebank, база данных MIM.

Кроме ядерной ДНК у человека имеется митохондриальная, содержащая 2 гена, кодирующих р-РНК, 22 гена – т-РНК и 13 белок-кодирующих генов, несущих информацию о некоторых субъединицах тканевого окисления. Протяженность ДНК митохондрий около 16,5 тыс.пар нуклеотидов.

Гены, имеющие сходную структуру и функции, были объединены в генные семейства. Существуют миозиновые, тубулиновые, миелиновые и другие семейства генов (более 100), а некоторые включают десятки групп родственных генов (суперсемейство цитохромов).

ПРИМЕРЫ

При изучении генных семейств в них были выявлены так называемые «молчащие» гены, т.е. гены, для которых не были обнаружены продукты их экспрессии, что объясняется различными изменениями структуры таких генов (нонсенс-мутации, изменения на границе экзонов и интронов, отсутствие промоторных областей и др.). Они были названы псевдогенами. Вопросы об их назначении и происхождении остаются открытыми, однако при некоторых наследственных заболеваниях выявлены мутации в псевдогенах.

Рассмотрим этапы генной экспрессии:

1 этап: транскрипция, т.е. переписывание информации с ДНК на матричную или информационную РНК;

2 этап: процессинг, включающий в свою очередь:

- сплайсинг, т.е. процесс вырезания интронов рестриктазами и сшивание кодирующих последовательностей (экзонов);

- кээпирование и полиаденирование терминирующих последовательностей модифицированных м-РНК, по-видимому, с целью защиты их от неблагоприятного воздействия субстратов при прохождении через ядерную мембрану и при функционировании в цитоплазме;

3 этап: трансляция, т.е. перевод полинуклеотидной последовательности РНК в первичную полипептидную цепочку. Этот процесс происходит на рибосомах при участии р-РНК и т-РНК, а также полимераз и др. ферментов;

4 этап: посттрансляционные модификации, когда окончательно формируется биологически активный субстрат.

Вся эта последовательность превращений от ДНК до конечного продукта называется экспрессией гена, и на всех этапах могут возникать "дефекты метаболизма", что приводит к патологии (болезни нарушения экспрессии гена).

На современном этапе установлено, что подавляющая часть геномной ДНК принадлежит некодирующим последовательностям, а гены занимают вряд ли более 10% всей нуклеиновой последовательности.

Рассмотрим некоторые свойства генов:

1) Дискретность действия, т.е. развитие различных признаков контролируется различными генами, локализация которых в хромосомах различна.

2) Стабильность, т.е. при отсутствии мутаций ген передается в ряду поколений в неизменном виде.

3) Специфичность действия, т.е. ген обуславливает развитие определенного признака или группы.

4) Дозированность действия, т.е. ген обуславливает развитие признака до определенного количественного предела.

5) Аллельное состояние, т.е. большинство генов существуют в виде 2-х и более альтернативных вариантов аллелей, которые локализованы в определенном локусе хромосомы. Если аллели идентичны по своему содержанию, то говорят о гомозиготном состоянии, если различны – о гетерозиготном.

Мутации.

Стойкое, скачкообразное изменение в наследственном аппарате клетки, не связанное с обычной рекомбинацией генетического материала, называется мутацией.

Виды мутаций:

1) генные — изменение структуры или последовательности расположения в ДНК отдельных генов. Фенотипически при этом изменяется состав аминокислот в белках, кодируемых геном;

2) хромосомные — изменение структуры хромосом (утрата или удлинение их участков). Фенотипически проявляются тоже через изменение состава белка;

3) геномные — изменение числа хромосом (недостаток или избыток) в наборе, не сопровождаемое изменениями их структуры.

По характеру изменения генетического материала (гена или хромосомы) выделяют следующие мутации: а) делеции — выпадение какого-либо участка гена или хромосомы; б) транслокации — перемещение участка; в) инверсии — поворот участка на 180° (хромосома перекручивается, гены располагаются в обратном порядке; г) дупликация — вставляется лишний ген.

По причинному характеру выделяют спонтанные (самопроизвольные) мутации и индуцированные. Последние развиваются под влиянием мутагенных факторов, среди которых различают экзогенные и эндогенные.

К экзогенным относятся:

1. Физические мутагены: а) ионизирующее излучение (оказывает прямое воздействие на ДНК, изменяя последовательность нуклеиновых кислот); б) ультрафиолетовые лучи (в большой дозе вызывают метилирование ДНК); в) температура (мутагенным свойством обладает только перегревание).

2. Химические мутагены: а) высокоактивные вещества; б) свободные радикалы; в) цитостатики и др.

Все химические мутагены должны легко проникать в клетку и достигать ядра.

3. Биологические факторы. Обычно это вирусы. Есть два пути их мутагенного воздействия: а) вирус непосредственно проникает в ДНК; б) в результате жизнедеятельности вирусов образуются продукты распада, которые являются мутагенными.

Эндогенные химические мутагены образуются на путях обмена веществ в организме — перекись водорода и липидные перекиси, а также свободные кислородные радикалы.

Мутации могут происходить как в соматических, так и в половых клетках (гаметические мутации). В первом случае последствия связаны только с судьбой данного организма, а во втором — последствия сказываются на судьбе потомства.

И, наконец, нужно помнить, что мутация не всегда влечет за собой изменения в организме, так как:

1) не каждая замена азотистого основания в молекуле ДНК приводит к ошибке при ее редупликации;

2) не всякое аминокислотное замещение в молекуле белков приводит к нарушению ее конформации;

3) только 5 % генов функционирует, а остальные находятся в репрессированном состоянии и не транскрибируются.