Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Литература / Vengerovskij_Lektsii_po_farmakologii_3-e_izdan.doc
Скачиваний:
1574
Добавлен:
05.02.2018
Размер:
6.14 Mб
Скачать

Депонирование лекарственных средств

Лекарственные средства транспортируются к циторецепторам и органам элиминации в форме депо с белками крови. Слабые кислоты связываются с альбуминами, слабые основания — с кислыми 1-гликопротеинами и липопротеинами (табл. 5). Адсорбция на белках обратима и происходит по принципу комплементарности при участии вандерваальсовых, водородных, ионных, дипольных сил взаимодействия, алкилирование белков наблюдается редко. Как известно, катионы аминов образуют с анионами карбоновых кислот в молекулах белков ионные и водородные связи, которые дополнительно стабилизируются вандерваальсовыми связями. При взаимодействии лекарственных средств с ароматическими группами белков гидрофобные связи дополняются комплексонообразованием с переносом заряда. Реакция с белками крови превращает водорастворимые лекарственные средства в липофильные.

Таблица 5. Белки плазмы крови и форменные элементы, связывающие лекарственные средства

Белки, форменные элементы

Лекарственные средства

Альбумины

Бутадион, кислота ацетилсалициловая, фуросемид, пенициллины, цефалоспорины, сульфаниламиды

Липопротеины

Аминазин, имипрамин, хинидин, тетрациклины

Кислые 1-гликопротеины

Лидокаин, празозин, анаприлин, имипрамин, хинидин, дизопирамид, верапамил, дипиридамол

γ-Глобулин

Тубокурарин, морфин, кодеин

Эритроциты

Местные анестетики, пентазоцин, аминазин, имипрамин, викасол, нитрофураны

Связанная с белками фракция, не оказывая фармакологического действия, возмещает удаленные из циркуляции молекулы активной свободной фракции. Период полуэлиминации комплекса лекарственного средства с белками крови составляет всего 20 мс.

Более чем на 90 % с белками связываются β-адреноблокатор анаприлин, противоэпилептический препарат дифенин, нестероидные противовоспалительные средства, нейролептики аминазин и галоперидол, транквилизаторы хлозепид и сибазон, трициклические антидепрессанты, сердечный гликозид дигитоксин, мочегонное средство фуросемид. Специфические транспортные белки есть у витаминов, гормонов, ионов железа.

При высокой степени связывании с белками действие лекарственных средств замедляется. Повышение количества 1-гликопротеинов у пациентов с инфарктом миокарда и острыми воспалительными заболеваниями снижает эффективность фармакотерапии анаприлином, лидокаином, хинидином. Напротив, дефицит белков крови (недоношенность, гипотрофия детей, голодание, заболевания печени и почек, ожоги) сопровождается ростом доли свободной фракции и усилением фармакологического эффекта.

Лекарственные средства с выраженным аффинитетом к тканевым белкам имеют концентрацию в крови ниже, чем в органах. Известно, что нестероидные противовоспалительные средства (бутадион, диклофенак), интенсивно связываясь с белками синовиальной жидкости, через 12 ч после приема накапливаются в воспаленных суставах. Концентрация сердечных гликозидов в миокарде в 4 — 10 раз больше, чем в крови. Цефалоспорины связываются в максимальной степени с белками асцитической жидкости.

Связь с белками замедляет гломерулярную фильтрацию лекарственных средств, но мало влияет на их секрецию в почечных канальцах и биотрансформацию.

Лекарственные средства могут конкурировать за связь с белками между собой и с естественными метаболитами организма. Так, лекарства кислого характера, вытесняя билирубин, создают опасность энцефалопатии у новорожденных детей. Фармакологическая несовместимость, возникающая в результате взаимодействия лекарственных средств с белками крови, рассмотрена в лекции 54.

При высокой концентрации лекарственных средств наступает насыщение мест связывания на белках крови. Белковая связь играет роль в возникновении аллергических реакций.

Лекарственные средства адсорбируются также на эритроцитах (местные анестетики, викасол, нитрофураны) и тромбоцитах (серотонин).

Связывание лекарственных средств с белками крови зависит от многих факторов. В детском возрасте этот процесс происходит в меньшей степени, чем у взрослых (для лидокаина, анаприлина, дифенина, сибазона, теофиллина, ампициллина), так как у детей уменьшен синтез альбуминов и кислых 1-гликопротеинов в печени, белки имеют качественно другую последовательность аминокислот, перегружены продуктами метаболизма (билирубин, жирные кислоты, стероиды).

В крови пожилых людей возрастает количество 1-гликопротеинов, на 10 — 20% снижается содержание альбуминов. В связи с этим уменьшается доля свободной фракции противоаритмических средств лидокаина и дизопирамида, вдвое повышается концентрация свободного напроксена.

Имеются сообщения о зависимости от пола в связывании с белками антидепрессанта имипрамина, транквилизатора сибазона, антикоагулянта варфарина. У женщин связь лекарственных средств с белками модифицируют эстрогены. В 3-м триместре беременности концентрация альбуминов в крови снижается на 1 г/100мл, что ослабляет связывание лекарств на 20%. Однако их пиковые концентрации снижаются вследствие увеличения общего количества жидкости в организме (в среднем на 8 л). Под генетическим контролем находятся расположение остатков сиаловой кислоты и композиция пептидной цепи в молекулах 1-гликопротеина.

Липидорастворимые лекарственные средства депонируются в жировой ткани, например, наркозный препарат тиопентал-натрий после инъекции в вену быстро поступает в головной мозг и вызывает наркоз, но уже спустя 20 — 25 мин его основное количество оказывается в скелетных мышцах, а затем в жировых депо. Из депо тиопентал медленно вновь поступает в кровь и головной мозг, поэтому в посленаркозном периоде возникают депрессия и сонливость.

Лекция 3

ЭЛИМИНАЦИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Элиминация (лат. elimino, eliminatum — выносить за порог, удалять) — это удаление лекарственных средств из организма в результате биотрансформации и экскреции.

Лекарственные средства элиминируются только из центральной камеры. Лекарства, находящиеся в периферической камере, предварительно транспортируются в центральную камеру, а затем подвергаются элиминации.

Элиминация лекарственных средств из плазмы крови происходит согласно экспоненциальной кинетике первого порядка — выводится постоянная часть от концентрации за единицу времени. При работе систем элиминации в условиях насыщения возникает кинетика нулевого порядка — выводится постоянное количество препарата за единицу времени.

Элиминацию лекарственных средств характеризует ряд фармакокинетических параметров:

  • константа скорости элиминации — часть от концентрации в крови, удаляемая за единицу времени (вычисляется в %);

  • период полуэлиминации — время, за которое концентрация в крови снижается наполовину (Т1/2);

  • клиренс (англ. clearanceочищение) — объем жидких сред организма, освобождающихся от лекарственных средств в результате биотрансформации, выведения с желчью и мочой (вычисляется в мл/мин/кг).

Различают печеночный (метаболический, желчный) и почечный клиренсы. Например, у циметидина — противогистаминного средства, применяемого для терапии язвенной болезни, почечный клиренс равен 600 мл/мин, метаболический — 200 мл/мин, желчный — 10 мл/мин. Клиренс зависит от состояния ферментных систем печени и интенсивности печеночного кровотока. Для элиминации препарата с быстрым метаболизмом в печени — местного анестетика лидокаина — основное значение имеет печеночный кровоток, для элиминации антипсихотических средств группы фенотиазина — активность ферментных систем детоксикации.

При повторном применении лекарственных средств в биофазе циторецепторов создается равновесное состояние, когда количество поступающего препарата равно количеству элиминируемого. При равновесном состоянии концентрация колеблется в небольших пределах, а фармакологические эффекты проявляются в полной мере. Чем короче период полуэлиминации, тем скорее достигается равновесная концентрация и тем больше разница между максимальной и минимальной концентрациями. Обычно равновесное состояние наступает через 3 — 5 периодов полуэлиминации.

БИОТРАНСФОРМАЦИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Биотрансформация представляет собой метаболические превращения лекарственных средств. В большинстве реакций образуются метаболиты, более полярные, чем исходные лекарственные средства. Полярные метаболиты хуже растворяются в липидах, но обладают высокой растворимостью в воде, меньше подвергаются энтерогепатической циркуляции (выведение с желчью в кишечник и повторное всасывание в кровь) и реабсорбции в почечных канальцах. Без биотрансформации одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет.

Эндобиотики подвергаются превращениям под влиянием специфических ферментов, осуществляющих метаболизм их эндогенных аналогов. Ксенобиотики используют для метаболизма ферменты с малой субстратной специфичностью, например, окисляются при участии цитохрома Р-450. Его предшественник появился у бактерий 1,5 млрд лет тому назад. После расхождения путей эволюции растений и животных 1,2 млрд лет тому назад у животных возникли изоферменты цитохрома Р-450 3 и 4 для обезвреживания токсических веществ растений. Выход жизни из моря на сушу 400 млн лет тому назад сопровождался появлением большого числа новых видов растений, часть которых образовывала неизвестные ранее токсические продукты. У животных для безопасного питания этими растениями сформировались изоферменты 1 и 2.

Биотрансформация ксенобиотиков происходит в печени (90 — 95 %), слизистой оболочке тонкого кишечника, почках, легких, коже, крови. Наиболее изучены процессы биотрансформации на мембранах гладкого эндоплазматического ретикулума (ЭПР) печени. Опыты показали, что при гомогенизации и ультрацентрифугировании клеток канальцы ЭПР разрываются и превращаются в функционально активные фрагменты — микросомы. Реакции биотрансформации протекают также в ядре, цитозоле, митохондриях, на плазматической мембране.

Процессы биотрансформации разделяют на две фазы. В реакциях первой фазы — метаболической трансформации — молекулы лекарственных средств подвергаются окислению, восстановлению или гидролизу. Большинство лекарственных средств преобразуется в неактивные метаболиты, но также могут появляться активные и токсические производные (табл. 6). В редких случаях изменяется характер фармакологической активности (антидепрессант ипрониазид превращается в противотуберкулезное средство изониазид). Во второй фазе — реакциях конъюгации — лекарственные средства присоединяют ковалентной связью полярные фрагменты с образованием неактивных продуктов. Для реакций конъюгации необходима энергия.

Таблица 6. Активные метаболиты лекарственных средств

Лекарственное средство

Активный метаболит

Амитриптилин

Нортриптилин

Анаприлин (пропранолол)

Гидроксипропранолол

Бутадион (фенилбутазон)

Оксифенилбутазон

Дигитоксин

Дигоксин

Имипрамин

Дезипрамин

Кислота ацетилсалициловая

Кислота салициловая

Кодеин

Морфин

Кортизон

Гидрокортизон

Метилдопа

Метилнорадреналин

Новокаинамид

N-ацетилновокаинамид

Сибазон (диазепам)

Нордазепам, оксазепам

Теофиллин

Кофеин

Хлозепид (хлордиазепоксид)

Деметилхлордиазепоксид, нордазепам, оксазепам

Соседние файлы в папке Литература