Скачиваний:
297
Добавлен:
24.07.2017
Размер:
289.79 Кб
Скачать

11. Частица в бесконечно глубокой одномерной потенциальной яме. Квантование энергии частицы. Собственные значения волновой функции

Потенциальная яма – область пространства, где присутствует локальный минимум потенциальной энергии частицы.

Используя граничные условия, имеем:

Ψ(x = 0) = a sin α = 0 Отсюда, α = 0

Ψ(x = 1) = a sin ωl = 0 Отсюда, ωl = ± nπ (n = 1,2, …)

Учитывая значения ω, получим:

En = ħ2π2/2ml n2 (n = 1, 2, …)

En – собственные значения энергии.

Принцип квантования энергии гласит, что любая система взаимодействующих частиц, способная образовывать стабильное состояние - будь то кусок твердого тела, молекула, атом или атомное ядро, - может сделать это только при определенных значениях энергии.

12. Прохождение частиц через полубесконечный потенциальный барьер высотой U0 (E < U0)

Если энергия частицы недостаточна для преодоления барьера,

E < U0, то в некоторой точке x1 частица, движущаяся слева направо, останавливается и затем движется в обратном направлении. То есть потенциальный барьер является как бы непрозрачной стенкой, барьером, для частиц с энергией, меньшей высоты потенциального барьера.

В квантовой механике, в отличие от классической, возможно прохождение через потенциальный барьер частиц с энергией

E < U0 . Такие особенности поведения частиц в квантовой физике непосредственно связаны с корпускулярно-волновой природой микрочастиц.

13. Прохождение частиц через полубесконечный потенциальный барьер высотой U0 (E > U0)

В классической механике прохождение частицы через потенциальный барьер возможно лишь в том случае, если её полная (кинетическая + потенциальная) энергия E превышает высоту потенциального барьера: E > U0; тогда частица пролетает над барьером.

В квантовой механике, в отличие от классической, возможно отражение от потенциального барьера. частиц с энергией E > V0 .

Такие особенности поведения частиц в квантовой физике непосредственно связаны с корпускулярно-волновой природой микрочастиц.

14. Туннельный эффект. Коэффициент прозрачности барьера

Туннельный эффект - преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное в классической механике; аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение.

Коэффициент прозрачности барьера D:

Коэффициент прозрачности характеризует вероятность прохождения частицы сквозь барьер. Эта вероятность очень сильно зависит от толщины барьера d: чем толще барьер, тем меньше вероятность туннельного эффекта.

15. Квантово-механический осциллятор

Квантовым гармоническим осциллятором называется система, способная совершать гармонические колебания.

Гармоническим осциллятором называется система, способная совершать гармонические колебания:

h2/2m = ∆ψ + V (x, y, z) ψ = Eψ.

Это волновое уравнение описывает взаимодействие волны и корпускулы в гармоническом в квантовом гармоническом осцилляторе, который находится в стационарном состоянии и в котором энергия E механического движения существует в определенном пространстве неопределенное время в соответствии со всеобщим соотношением неопределенностей пространства и времени.

Именно поэтому в этом волновом уравнении наглядно показана зависимость потенциала V от определенных числовых значений координат определенного пространства осциллятора и не зависит от числовых значений координаты неопределенного времени. Определенная энергия E осциллятора имеет три пространственные формы своего выражения: общую, особенную и единичную.

Соседние файлы в папке Ответы на вопросы (3 семестр)