Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фюзеляж_1 / МАИ учебник.doc
Скачиваний:
1731
Добавлен:
24.07.2017
Размер:
13.29 Mб
Скачать

21.5. Уменьшение массы самолета

   Оценим уменьшение потребной массы топлива Δmтдля полета самолета в течение 1 ч за счет снижения массы самолетаΔmна 1 кг. Принимая обычные для современного самолета величиныK=18,0 иCр= 0,06 г/(Н·ч), получаем (в граммах в час)

   Снижение массы самолета приводит к уменьшению потребного запаса топлива на борту, что, в свою очередь, снижает массу самолета, потребную тягу и, соответственно, массу двигателя и т. д. Оценив все эти изменения массы самолета и потребного запаса топлива, окончательно получим, что снижение массы самолета Δmна 1 кг приводит к уменьшению расхода топлива на один час полетаΔmтпримерно на 40 г.    Годовой налет пассажирского самолета составляет примерно 2500 ч, причем в эксплуатации находится не один самолет, а примерно 500 самолетов данного типа. Тогда годовая экономия топлива составит 40·2500·500 = 0,5·108г = 50 т.    Итак, уменьшение при проектировании или изготовлении массы пустого самолета даже на 1 кг дает значительную экономию топлива при эксплуатации самолетов.    Получение в процессе проектирования и производства минимально возможной массы всех компонентов самолета - одна из основных задач специалистов, создающих новый самолет.    Эта задача должна решаться, во-первых, уменьшением массы конструкции за счет:       - выбора оптимальных конструктивно-силовых схем агрегатов и применения более совершенных методов расчета конструкции на прочность;       - применения новых, более прочных материалов или материалов с большей выносливостью - сопротивляемостью усталостным повреждениям (например, алюминий-литиевых сплавов, композиционных материалов).    Уменьшение массы конструкции самолета возможно и за счет применения автоматических систем управления, предназначенных для уменьшения эксплуатационных перегрузок при воздействии вертикальных порывов воздуха и при выполнении маневров во время полета.    Во-вторых, уменьшение массы самолета достигается использованием более легкого и совершенного оборудования. Переход к электродистанционному управлению самолетом без запасной механической системы управления, к автоматической системе повышения устойчивости самолета, позволяющей уменьшить размеры горизонтального оперения, к использованию гидравлической системы с более высоким давлением, к использованию тормозов из углеродных КМ, к применению новых усиленных и облегченных пневматиков, облегчение элементов интерьера пассажирских салонов, в частности кресел, - все это в совокупности позволит существенно уменьшить массу пустого самолета.

21.6. Увеличение аэродинамического качества самолета

   Проблемы увеличения аэродинамического качества самолета могут быть рассмотрены в трех аспектах: проектно-конструкторском, производственно-технологическом и эксплуатационном.    Проектно-конструкторский аспект повышения аэродинамического качества предполагает поиск путей снижения аэродинамического сопротивления и увеличения несущей способности самолета.    Первый путь - уменьшение потерь на балансировку самолета. Для этого требуется обеспечить полет с предельно допустимыми задними центровками при минимальном запасе устойчивости, что достигается применением автоматической системы управления с режимом обеспечения устойчивости и применением балансировочных топливных баков, позволяющих перекачкой в них (или из них) топлива регулировать положение центра масс самолета. Использование схемы "утка" для пассажирского самолета также позволяет существенно снизить потери аэродинамического качества на балансировку.    Второй путь связан с ламинаризацией крыла и оперения, с использованием новых аэродинамических профилей крыла, в том числе сверхкритических профилей, с изменением компоновки крыла (распределение профилей и крутки крыла по размаху, форма и размеры наплывов и т. п.) для увеличения коэффициента подъемной силы при больших скоростях полета и уменьшения потерь на балансировку.    Третий путь - использование крыла максимально возможного удлинения для снижения индуктивного сопротивления и использование концевых вихрей крыла для уменьшения сопротивления крыла и "размывания" спутного следа самолета. С этой целью на концах крыла устанавливаются дополнительные вертикальные крылышки различной формы.    Четвертый путь - создание такой внешней конфигурации самолета, при которой было бы максимально снижено вредное влияние (интерференция) одних частей самолета на другие и было бы возможно меньше участков поверхности самолета, где создаются условия нарушения плавного обтекания, а также улучшение местной аэродинамики за счет лучшего обтекания выступающих элементов самолета.    Производственно-технологический аспект связан с качеством поверхности частей самолета. Отступление от теоретических обводов, выступание одного листа обшивки над другим, негерметичность уплотнений в гермокабине, неплотное прилегание отклоняемых агрегатов (предкрылков, интерцепторов и т. д.), асимметрия самолета вызывают перерасход топлива, исчисляемый десятками и даже сотнями тонн в год.    Эксплуатационный аспект связан с необходимостью наблюдения за качеством окраски поверхностей самолета, за чистотой этих поверхностей, за правильностью показаний приборов.    Крайне важно эксплуатировать самолеты на оптимальных режимах полета по высоте и по скорости.

Соседние файлы в папке Фюзеляж_1