Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экзамен / Ответы на Экзаменационный Билеты по Микробиологии

.doc
Скачиваний:
725
Добавлен:
19.06.2017
Размер:
1.99 Mб
Скачать

Билет № 19

Билет № 19

Билет № 19

1. Стафилококки. Таксономия. Характеристика. Микробиологическая диагностика заболеваний, вызываемых стафилококками. Специфическая профилактика и лечение.

Таксономия: относятся к от­делу Firmicutes, семейству Мicrococcacae, роду Staphylococcus. К данному роду относятся 3 вида: S.aureus, S.epidermidis и S.saprophyticus.

Морфологические свойства: Все виды стафилококков представляют собой округлые клетки. В мазке располагаются не­симметричными гроздьями. Клеточная стенка содержит большое количество пептидогликана, связанных с ним тейхоевых кислот, протеин А. Грамположительны. Спор не образуют, жгутиков не имеют. У некото­рых штаммов можно обнаружить капсулу. Могут образовывать L-формы.

Культуральные свойства: Стафилококки — факультативные анаэробы. Хорошо растут на простых средах. На плотных средах образуют гладкие, выпуклые колонии с различным пигментом, не име­ющим таксономического значения. Могут расти на агаре с высоким содержанием NaCl. Обладают сахаролитичес-

кими и протеолитическими ферментами. Стафилококки могут вырабатывать гемолизины, фибринолизин, фосфатазу, лактамазу, бактериоцины, энтеротоксины, коагулазу.

Стафилококки пластичны, быстро приобретают устой­чивость к антибактериальным препаратам. Существенную роль в этом играют плазмиды, передающиеся с помощью трансдуцирующих фагов от одной клетки к другой. R-плазмиды детерми­нируют устойчивость к одному или нескольким антибиотикам, за счет продукции в-лактамазы.

Антигенная структура. Около 30 антигенов, представляющих собой белки, полисахариды и тейхоевые кислоты. В составе клеточной стенки стафилококка содержится протеин А, который может прочно связываться с Fc-фрагментом молекулы иммуноглобулина, при этом Fab-фрагмент оста­ется свободным и может соединяться со специфическим анти­геном. Чувствительность к бактериофагам (фаготип) обусловлена повер­хностными рецепторами. Многие штаммы стафилококков явля­ются лизогенными(образование некоторых токсинов происхо­дит с участием профага).

Факторы патогенности: Условно – патогенные. Микрокапсула защищает от фагоцитоза, способствует адгезии микробов; компоненты клеточной стенки – стимулируют развитие воспалительных процессов. Ферменты агрессии: каталаза – защищает бактерии от действия фагоцитов, в-лактамаза – разрушает молекулы антибиотиков.

Резистентность. Устойчивость в окружа­ющей среде и чувствительность к дезинфектантам обычная.

Патогенез. Источником инфекции стафилококков - человек и некоторые виды животных (больные или но­сители). Механизмы передачи — респираторный, контактно-бы­товой, алиментарный.

Иммунитет: Постинфекционный – клеточно-гуморальный, нестойкий, ненажряженный.

Клиника. Около 120 клинических форм прояв­ления, которые имеют местный, системный или генерализованный характер. К ним относятся гной­но-воспалительные болезни кожи и мягких тканей (фурункулы, абсцессы), поражения глаз, уха, носоглот­ки, урогенитального тракта, пищеварительной системы (инток­сикации).

Микробиологическая диагностика. Материал для исследования – гной, кровь, моча, мокрота, испражнения.

Бактериоскопический метод: из исследуемого материала (кроме крови) готовят мазки, окрашивают по Граму. Наличие грам «+» гроздевидных кокков, располагающихся в виде скоплений.

Бактериологический метод: Материал засевают петлей на чашки с кровяным и желточно-солевым агаром для получения изолированных колоний. Посевы инкубируют при 37С в течении суток. На следующий день исследуют выросшие колонии на обеих средах. На кровяном агаре отмечают наличие или отсутствие гемолиза. На ЖСА S. aureus образует золотистые круглые выпуклые непрозрачные колонии. Вокруг колоний стафилококков, обладающих лецитиназной активностью, образуются зоны помутнения с перламут­ровым оттенком. Для окончательного установления вида ста­филококка 2—3 колонии пересевают в пробирки со скошенным питательным агаром для получения чистых культур с последую­щим определением их дифференциальных признаков. S.aureus – «+»: образование плазмокоагулазы, летициназы. Ферментация:глк, миннита, образование а-токсина.

Для установления источника госпитальной инфекции выде­ляют чистые культуры стафилококка от больных и бактерионо­сителей, после чего проводят их фаготипирование с помощью набора типовых стафилофагов. Фаги разводят до титра, указан­ного на этикетке. Каждую из исследуемых культур засевают на питательный агар в чашку Петри газоном, высушивают, а за­тем петлей каплю соответствующего фага наносят на квадраты (по числу фагов, входящих в набор), предварительно разме­ченные карандашом на дне чашки Петри. Посевы инкубируют при 37 °С. Результаты оценивают на следующий день по нали­чию лизиса культуры.

Серологический метод: в случаях хронической инфекции, определяют титр анти-а-токсина в сыворотке крови больных. Определяют титр АТ к риботейхоевой кислоте( компонент клеточной стенки).

Лечение и профилактика. Антибиотики широкого спектра действия (пенициллины, устойчивые к в-лактамазе). В случае тяжелых стафилококковых инфекций, не поддающихся лечению антибиотиками, может быть использована антитокси­ческая противостафилококковая плазма или иммуноглобулин, иммунизи­рованный адсорбированным стафилококковым анатоксином. Выявление, лечение больных; проведение планового обследования медперсонала, вакцинация стафилококковым анатоксином. Стафилококковый анатоксин: получают из нативного анатоксина путем осаждения трихлоруксусной кислотой и адсорбцией на гидрате оксида алюминия.

Стафилококковая вакцина: взвесь коагулазоположительных стафилококков, инактивированных нагреванием. Применяют для лечения длительно текущих заболеваний.

Иммуноглобулин человеческий противостафилококковый: гамма-глобулиновая фракция сыворотки крови, содержит стафилококковый анатоксин. Готовят из человеч. крови, с высоким содержанием антител. Применяется для специфического лечения.

2. Типы и механизмы питания бактерий.

Типы питания. Микроорганизмы нуждают­ся в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы, использующие для построения своих клеток диоксид углерода С02 и другие неорганические соединения, и гетеротрофы, питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобак­терии, живущие в воде с закисным железом, и др.

Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или живот­ных, относят к патогенным и условно-патогенным. Среди пато­генных микроорганизмов встречаются облигатные и фа­культативные паразиты (от греч. parasitos — нахлебник). Облигатные паразиты способны существовать только внутри клетки, например риккетсии, вирусы и некоторые простейшие.

В зависимости от окисляемого субстрата, называемого доно­ром электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров во­дорода неорганические соединения, называют литотрофны-ми (от греч. lithos — камень), а микроорганизмы, использую­щие в качестве доноров водорода органические соединения, — органотрофами.

Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые во­доросли, использующие энергию света), и хемотрофы, нуж­дающиеся в химических источниках энергии.

Механизмы питания. Поступление различных веществ в бак­териальную клетку зависит от величины и растворимости их мо­лекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая мак­ромолекулы массой более 600 Д. Основным регулятором поступ­ления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения пи­тательных веществ в бактериальную клетку: это простая диффу­зия, облегченная диффузия, активный транспорт, транслокация групп.

Наиболее простой механизм поступления веществ в клетку — простая диффузия, при которой перемещение веществ про­исходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны (органические молеку­лы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.

Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазмати­ческой мембраны. Однако этот процесс осуществляется с помо­щью молекул-переносчиков, локализующихся в цитоплазматичес­кой мембране и обладающих специфичностью. Каждый перенос­чик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембра­ны — собственно переносчику. Белками-переносчиками могут быть пермеазы, место синтеза которых — цитоплазматичес­кая мембрана. Облегченная диффузия протекает без затраты энер­гии, вещества перемещаются от более высокой концентрации к более низкой.

Активный транспорт происходит с помощью пермеаз и направлен на перенос веществ от меньшей концентрации в сто­рону большей, т.е. как бы против течения, поэтому данный про цесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных ре­акций в клетке.

Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видо­изменяется в процессе переноса, например фосфорилируется.

Выход веществ из клетки осуществляется за счет диффузии и при участии транспортных систем.

3. Реакция пассивной гемагглютинации. Механизм, компоненты, применение.

Реакция непрямой (пассивной) гемагглютинации (РНГА, РПГА) основана на использова­нии эритроцитов (или латекса) с адсорбиро­ванными на их поверхности антигенами или антителами, взаимодействие которых с соот­ветствующими антителами или антигенами сыворотки крови больных вызывает склеива­ние и выпадение эритроцитов на дно пробирки или ячейки в виде фестончатого осадка.

Компоненты. Для постанов­ки РНГА могут быть использованы эритроциты барана, лошади, кролика, курицы, мыши, человека и другие, которые заготавли­вают впрок, обрабатывая формалином или глютаральдегидом. Ад­сорбционная емкость эритроцитов увеличивается при обработке их растворами танина или хлорида хрома.

Антигенами в РНГА могут служить полисахаридные АГ микро­организмов, экстракты бактериальных вакцин, АГ вирусов и риккетсий, а также другие вещества.

Эритроциты, сенсибилизированные АГ, называются эритроцитарными диагностикумами. Для приготовления эритроцитарного диагностикума чаще всего используют эритроциты барана, обла­дающие высокой адсорбирующей активностью.

Применение. РНГА применяют для диагностики инфекционных болезней, определения гонадотропного гор­мона в моче при установлении беременности, для выявления повышенной чувствительнос­ти к лекарственным препаратам, гормонам и в некоторых других случаях.

Механизм. Реакция непрямой гемагглютинации (РНГА) отличается значительно более высокой чувствительностью и специфич­ностью, чем реакция агглютинации. Ее используют для иденти­фикации возбудителя по его антигенной структуре или для индикации и идентификации бактериальных продуктов — токси­нов в исследуемом патологическом материале. Соответственно используют стандартные (коммерческие) эритроцитарные анти­тельные диагностикумы, полученные путем адсорбции специфи­ческих антител на поверхности танизированных (обработанных танином) эритроцитов. В лунках пластмассовых пластин готовят последовательные разведения исследуемого материала. Затем в каждую лунку вносят одинаковый объем 3 % суспензии на­груженных антителами эритроцитов. При необходимости реакцию ставят параллельно в нескольких рядах лунок с эритроцитами, нагруженными антителами разной групповой специфичности.

Через 2 ч инкубации при 37 °С учитывают результаты, оценивая внешний вид осадка эритроцитов (без встряхивания): при отри­цательной реакции появляется осадок в виде компактного.диска или кольца на дне лунки, при положительной реакции — харак­терный кружевной осадок эритроцитов, тонкая пленка с неров­ными краями.

Билет № 20

Билет № 20

Билет № 20

1. Возбудители гепатитов А и Е. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика.

Острая инфекционная болезнь, с лихорадкой, поражением печени. Антропоноз.

Таксономия, морфология, антигенная струк­тура: Семейство Picornaviridae род Hepatovirus. Типовой вид —имеет один серотип. Это РНК-содержащий вирус, просто организо­ванный, имеет один вирусоспецифический антиген.

Культивирование: Вирус выращивают в культурах клеток. Цикл репродукции более длительный, чем у энтеровирусов, цитопатический эффект не выражен.

Резистентность: Устойчивос­тью к нагреванию; инактивируется при кипячении в течение 5 мин. Относительно устойчив во внешней среде (воде).

Эпидемиология. Источник-больные. Механизм заражения — фекально-оральный. Вирусы выделяются с фекалиями в начале клинических проявлений. С появлением желтухи интенсив­ность выделения вирусов снижается. Вирусы передаются через воду, пищевые продукты, руки.

Болеют преимущественно дети в возрасте от 4 до 15 лет.

Патогенез: Обладает гепатотропизмом. После заражения репликация вирусов происходит в кишечнике, а оттуда че­рез портальную вену они проникают в печень и реплицируются в цитоплазме гепатоцитов. Повреждение гепатоцитов возникает в ре­зультате иммунопатологических механизмов.

Клиника. Инкубационный период - от 15 до 50 дней. Начало острое, с повышением т-ры и тошнотой, рвотой). Возможно появление желтухи на 5-й день. Клиническое течение заболевания легкое, без особых осложнений. Продолжительность заболевания 2 нед. Хронические формы не развиваются.

Иммунитет. После инфекции - стойкий пожизненный иммунитет, связан­ный с IgG. В начале заболевания в крови IgM, которые сохраняются в ор­ганизме в течение 4 месяцев и имеют диа­гностическое значение. Помимо гумо­рального, развивается и местный иммунитет в кишечнике.

Микробиологическая диагностика. Материа­л для исследования - сыворотка и испражнения. Диагностика основана глав­ным образом на определении в крови IgM с помощью ИФА, РИА и иммунной электрон­ной микроскопии. Этими же методами можно обнаружить вирусный антиген в фекалиях. Вирусологическое исследование не прово­дят.

Лечение. Симптоматическое.

Профилактика. Неспецифическая профи­лактика. Для специфической пассивной профилак­тики используют иммуноглобулин. Иммунитет сохраняется около 3 мес. Для специфической активной профилактики – инактивированная культуральная концентрированная вакцина. Рекомбинантная генно – инженерная вакцина.

Гепатит Е

Антропоноз, фекально – оральным механизмом передачи.

Таксономия: семейство Caliciviridae. Недавно переведен из семейства в группу гепатит Е-подобных вирусов.

Структура. Вирион безоболочечный, сфери­ческий.. Геном — однони­тевая плюс-РНК, которая кодирует РНК-за­висимую РНК-полимеразу, папаинподобную протеазу и трансмембранный белок, обеспе­чивающий внедрение вируса в клетку.

Эпидемиология, клиника. Основной путь передачи — водный. Инкубационный период 2—6 недели. Поражение печени, интоксикацией, желтухой.

Иммунитет. После перенесенного заболева­ния стойкий.

Микробиологическая диагностика: 1) серо­логический метод — в сыворотке, плазме кро­ви с помощью ИФА определяют: антитела к вирусу (анти-HEV IgM, анти-HEV IgG); 2) молекулярно-генетический метод — при­меняют ПЦР для определения РНК вируса (HEV RNA) в кале и в сыворотке крови боль­ных в острой фазе инфекции.

Лечение. Симптоматическое. Беременным рекомендуется введение специфического им­муноглобулина.

Профилактика. Неспецифическая профилактика - улучшение санитарно-гигиенических условий и снабжение качественной питьевой водой. Созданы неживые цельновирионные вакцины, раз­рабатываются рекомбинантные и живые вакцины.

2. Видовой (наследственный) иммунитет. Неспецифические факторы защиты организма.

Врожденный, иди видовой, иммунитет, он же наследственный, генетический, консти­туциональный — это выработанная в про­цессе филогенеза генетически закреплен­ная, передающаяся по наследству невоспри­имчивость данного вида и его индивидов к какому-либо антигену (или микроорганиз­му), обусловленная биологическими осо­бенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия.

Примером может служить невосприимчи­вость человека к некоторым возбудителям, в том числе к особо опасным для сельскохо­зяйственных животных (чума крупного рога­того скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствитель­ность человека к бактериофагам, поражаю­щим клетки бактерий. К генетическому им­мунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом.

Объяснить видовой иммунитет можно с разных позиций, прежде всего отсутствием у того или иного вида рецепторного аппарата, обеспечивающего пер­вый этап взаимодействия данного антигена с клетками или молекулами-мишенями, опре­деляющими запуск патологического процесса или активацию иммунной системы. Не исклю­чены также возможность быстрой деструкции антигена, например, ферментами организма или же отсутствие условий для приживления и размножения микроба (бактерий, вирусов) в организме. В конечном итоге это обусловле­но генетическими особенностями вида, в час­тности отсутствием генов иммунного ответа к данному антигену.

Видовой иммунитет может быть абсолют­ным и относительным. Например, нечувс­твительные к столбнячному токсину лягушки могут реагировать на его введение, если по­высить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, при­обретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус.

3. Основные принципы культивирования бактерий.

Универсальным инструментом для производства посевов явля­ется бактериальная петля. Кроме нее, для посева уколом при­меняют специальную бактериальную иглу, а для посевов на чашках Петри — металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пасте­ровские и градуированные пипетки. Первые предварительно из­готовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец ка­пилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец за­крывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.

При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая дру­гими пальцами той же руки петлю, набирают ею посевной ма­териал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней ча­сти среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надг писывают, указывая дату посева и характер посевного мате­риала (номер исследования или название культуры).

Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, пет­лей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горел­ки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

Билет № 21

Билет № 21

Билет № 21

1. Возбудитель натуральной оспы. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.

Таксономия. Вирус натуральной ос­пы — ДНК-содержащий, семейство Poxviridae, род Orthopoxvirus.

Морфология и антигенная структура. Вирионы поксвирусов имеют кирпичеобразную или овоидную форму. Вирус натуральной оспы — один из самых крупных вирусов, обнаружен в световом мик­роскопе. Вирионы видны при специальных методах окраски в виде так называемых элементарных телец Пашена (ок­раска серебрением по Морозову). Поверхность вириона состоит из нитевидных, овоидных эле­ментов. Оболочка и наружная мембрана вири­она заключают сердцевину (ДНК и белки) и мембрану сердцевины. Геном вириона — двунитевая линейная ДНК с ковалентно замкнутыми кон­цами. Вирусы имеют более 30 структурных белков. Антигены — нуклеопротеиновый, растворимые и гемагглютинин; имеются общие ан­тигены с вирусом вакцины.

Культивирование. Вирус размножается: в куриных эмбрионах с образованием белых бляшек на хорион-аллантоисной оболочке; в культуре клеток, в цитоплазме которых формируются ха­рактерные околоядерные включения.

Резистентность. Вирусы устойчивы к вы­сушиванию и низким температурам, нечувс­твительны к эфиру. Моментально погибают при 100С, а при 60С — через 15 мин.

Эпидемиология. Особо опасная конвенционная (ка­рантинная) инфекция. Источником инфек­ции является больной человек, который заразен с последних дней инкубационного периода и до отпадения корок высыпаний. Инфицирование происходит воздушно-капель­ным, воздушно-пылевым, а также контактно-бытовым путями при соприкосновении с ве­щами больного, загрязненными слизью, гноем, калом и мочой, содержащими вирус.

Патогенез. Вирус прони­кает через слизистые оболочки верхних ды­хательных путей, реже — через кожу и после размножения в регионарных лимфатических узлах попадает в кровь. Из крови возбудитель заносится в кожу и лимфоидные ткани, в которых происходит размноже­ние вирусов, формируются очаги поражения в коже, слизис­тых оболочках и паренхиматозных органах. Характерно образование папулезных высыпаний.

Клиника. Инкубационный период 7—17 дней. Заболевание проявляется высокой температурой тела, рвотой, головной и поясничной болями, появлением сыпи. Первоначально сыпь имеет вид розовых пятен, которые затем переходят сначала в узелки — папулы, а затем — в пузырьки (везикулы) и пустулы , подсыхающие и превращающиеся в корки.

Различают несколько форм оспы: тяжелую (пустулезно-геморрагическая); среднетяжелую; легкую (оспа без сыпи, оспа без повыше­ния температуры тела).

Иммунитет. После перенесенной болезни формируется стойкий пожизненный иммуни­тет, обусловленный появлением вируснейтрализующих антител, интерферонов и актива­цией факторов клеточного иммунитета.

Микробиологическая диагностика. Исследуют содержимое элементов сыпи, отделяемое носоглотки, кровь, пора­женные органы и ткани. Вирус выявляют при электронной микроскопии, в РИФ, РП, по образованию телец Гварниери. Выделяют вирус путем заражения куриных эмбрионов и культур клеток с последующей идентифика­цией в реакции нейтрализации (на куриных эмбрионах), РСК, РТГА. Серологическую диагностику проводят в РТГА, РСК, РИГА, реакции нейтрализации.

Лечение. Симптоматическое; ин­дукторами интерферона и противовирусными препаратами.

Профилактика. Прочный им­мунитет создает живая оспенная вакцина. Ее готовят из соскобов сыпи телят или при культи­вировании вируса вакцины (осповакцины) на куриных эмбрионах. Вакцину вводят накожно. Разработана оральная таблетированная вакцина, менее реактогенная.

2. Механизмы формирования лекарственной устойчивости бактерий.

Антибиотикорезистентность — это устойчи­вость микробов к антимикробным химиопрепаратам. Бактерии следует считать резистент­ными, если они не обезвреживаются такими концентрациями препарата, которые реально создаются в макроорганизме. Резистентность может быть природной и приобретенной.

Природная устойчивость. Некоторые виды микробов природно ус­тойчивы к определенным семействам антиби­отиков или в результате отсутствия соответс­твующей мишени (например, микоплазмы не имеют клеточной стенки, поэтому не чувстви­тельны ко всем препаратам, действующим на этом уровне), или в результате бактериальной непроницаемости для данного препарата (на­пример, грамотрицательные микробы менее проницаемы для крупномолекулярных соеди­нений, чем грамположительные бактерии, так как их наружная мембрана имеет «маленькие» поры).

Приобретенная устойчивость. Приобретение резистентности — это биологическая закономерность, связанная с адаптацией микроорганизмов к условиям внешней среды. Она, хотя и в разной степени, справедлива для всех бактерий и всех анти­биотиков. К химиопрепаратам адаптируются не только бактерии, но и остальные микро­бы — от эукариотических форм (простейшие, грибы) до вирусов. Проблема формирования и распространения лекарственной резистен­тности микробов особенно значима для внутрибольничных инфекций, вызываемых так называемыми «госпитальными штаммами», у которых, как правило, наблюдается множес­твенная устойчивость к антибиотикам (так называемая полирезистентность).

Генетические основы приобретенной резис­тентности. Устойчивость к антибиотикам определяется и поддерживается генами резистентности (r-генами) и условиями, способствующими их распространению в микробных популяциях. Приобретенная лекарственная устойчивость может возникать и распространяться в попу­ляции бактерий в результате:

мутаций в хромосоме бактериальной клетки с последующей селекцией (т. е. отбором) му­тантов. Особенно легко селекция происходит в присутствии антибиотиков, так как в этих условиях мутанты получают преимущество перед остальными клетками популяции, ко­торые чувствительны к препарату. Мутации возникают независимо от применения анти­биотика, т. е. сам препарат не влияет на час­тоту мутаций и не является их причиной, но служит фактором отбора. Далее резистентные клетки дают потомство и могут передаваться в организм следующего хозяина (человека или животного), формируя и распространяя ре­зистентные штаммы. Мутации могут быть: 1) единичные (если мутация произошла в одной клетке, в результате чего в ней синтезируются измененные белки) и 2) множественные (се­рия мутаций, в результате чего изменяется не один, а целый набор белков, например пени-циллинсвязывающих белков у пенициллин-резистентного пневмококка);

переноса трансмиссивных плазмид резис­тентности (R-плазмид). Плазмиды резистен­тности (трансмиссивные) обычно кодируют перекрестную устойчивость к нескольким семействам антибиотиков. Впервые такая множественная резистентность была описа­на японскими исследователями в отношении кишечных бактерий. Сейчас показано, что она встречается и у других групп бактерий. Некоторые плазмиды могут передаваться меж­ду бактериями разных видов, поэтому один и тот же ген резистентности можно встретить у бактерий, таксономически далеких друг от друга. Например, бета-лактамаза, кодируемая плазмидой ТЕМ-1, широко распространена у грамотрицательных бактерий и встречается у кишечной палочки и других кишечных бак­терий, а также у гонококка, резистентного к пенициллину, и гемофильной палочки, резис­тентной к ампициллину;

переноса транспозонов, несущих r-гены (или мигрирующих генетических последова­тельностей). Транспозоны могут мигрировать с хромосомы на плазмиду и обратно, а также с плазмиды на другую плазмиду. Таким образом гены резистентности могут передаваться да­лее дочерним клеткам или при рекомбинации другим бактериям-реципиентам.

3. Неполные антитела. Реакция Кумбса. Механизм. Компоненты. Применение.

Полные и неполные антитела. Среди мно­гообразия Ig выделяют полные и неполные антитела. Деление основано на способности образовывать в реакции агглютинации или преципитации (in vitro) хорошо различимую глазом макромолекулярную структуру гига­нтского иммунного комплекса. Таким свойс­твом обладают полные антитела. К ним отно­сятся полимерные молекулы Ig (изотип М), а также некоторые IgA и IgG.

Неполные антитела лишены такой способ­ности, несмотря на то что они специфически связываются с антигеном. В связи с этим их еще называют непреципитирующими или блокирующими антителами. Причиной этого явления может быть экранирование одного из антигенсвязывающих центров мономерной молекулы Ig, а также недостаточное число или малая доступность антигенных детерми­нант на молекуле антигена. Выявить непол­ные антитела можно при помощи реакции Кумбса — путем использования «вторых», ан-тииммуноглобулиновых антител.

Реакцию агглютинации для определения антирезусных антител (непрямую реакцию Кумбса) применяют у больных при внутрисосудистом гемолизе. У некоторых таких боль­ных обнаруживают антирезусные антитела, которые являются неполными, одновалент­ными. Они специфически взаимодействуют с резус-положительными эритроцитами, но не вызывают их агглютинации. Наличие таких неполных антител определяют в непрямой реакции Кумбса. Для этого в систему антирезусные антитела + резус-положительные эритроциты добавляют антиглобулиновую сыворотку (антитела против иммуноглобули­нов человека), что вызывает агглютинацию эритроцитов. С помощью реакции Кумбса диагностируют патологические состо­яния, связанные с внутрисосудистым лизисом эритроцитов иммунного генеза, например ге­молитическую болезнь новорожденных: эрит­роциты резус-положительного плода соединя­ются с циркулирующими в крови неполными антителами к резус-фактору, которые пере­шли через плаценту от резус-отрицательной матери.

Механизм. Сложность выявления неполных (моновалентных) антител связана с тем, что эти антитела, связываясь с эпитопами специфического антигена, не образуют структуру решетки и реакция между антигенами и антителами не выявляется ни агглютина­цией, ни преципитацией, ни другими тестами. Для выявления образовавшихся комплексов антиген — антитело приходится ис­пользовать дополнительные тест-системы. Для выявления непол­ных антител, например к резус-антигену эритроцитов в сыворот­ке крови беременной женщины, реакция ставится в два этапа: 1) к двукратным разведениям испытуемой сыворотки добавляют эритроциты, содержащие резус-антиген, и выдерживают при 37 °С в течение часа; 2) к тщательно отмытым после первого этапа эритроцитам добавляют кроличью античеловеческую анти-глобулиновую сыворотку (в заранее оттитрованном рабочем раз­ведении). После инкубации в течение 30 мин при 37 °С резуль­таты оценивают по наличию гемагглютинации (положительная реакция). Необходимо ставить контроль ингредиентов реакции: 1) антиглобулиновая сыворотка + заведомо сенсибилизирован­ные специфическими антителами эритроциты; 2) обработанные нормальной сывороткой эритроциты + антиглобулиновая сыво­ротка; 3) обработанные исследуемой сывороткой резус-отрица­тельные эритроциты + антиглобулиновая сыворотка.