Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экзамен / Ответы на Экзаменационный Билеты по Микробиологии

.doc
Скачиваний:
725
Добавлен:
19.06.2017
Размер:
1.99 Mб
Скачать

Билет № 12

Билет № 12

Билет № 12

1. Возбудитель легионеллеза. Таксономия. Характеристика. Микробиологическая диагностика. Принципы лечения и профилактики.

Болезнь легионеров— группа инфекционных бо­лезней, вызываемых Legionella pneumophila, характеризующихся поражением респира­торного тракта, развитием тяжелых пневмо­ний и сопровождающихся нарушениями со стороны ЦНС и почек.

Морфологические свойства: семейство Legionellaceae, род Legionella. Грамотрицательные палоч­ки. Спор не образуют. Наличие внутренней и внешней мембран; полисахаридная капсула отсутствует; имеют внутриклеточные жиро­вые вакуоли, а также множество рибосом. Нуклеоид диффузно распределен в цитоп­лазме. Геномная ДНК. Аэробы.

Культуральные свойства: требовательны к условиям культивирования. Растут при определенном наборе аминокислот, росто­вых факторов, рН среды и температуры на искусственных питательных средах. Являются факультативными внутриклеточными пара­зитами, поэтому растут в желточном мешке куриных эмбрионов, в культуре клеток жи­вотных. На плотной среде образуют характерные колонии с коричневым пигмен­том.

Ферментативная активность: сложная система: набор протеолитических фер­ментов, эстераз, гликолитических ферментов.

Антигенная структура: достаточно сложная, основными ан­тигенами являются типо- и группоспецифические. По антигенам выделяют не менее 8 серогрупп.

Факторами патогенности являются термо­стабильный белково-полисахаридный эн­дотоксин, проявляющийся гемолитической активностью, и цитолизин, обладающий цитотоксическим, а также протеолитическим действием.

Резистентность: устойчивы к действию физических и химических факто­ров. Чувствительны к антибиотикам (рифампицин, эритро­мицин).

Патогенез и клиника. Входные ворота инфек­ции — дыхательные пути. Возбудитель вызы­вает пневмонию. При гибели бактерий высвобож­дается эндотоксин, который вызывает инток­сикацию, обуславливает системное поражение с дыхательной и почечной недостаточностью.

Выделяют три клинические формы: 1) болезнь легионеров, протекаю­щую с тяжелой пневмонией; 2) лихорадка Понтиак — респираторное заболевание без пневмонии; 3) лихорадка Форт-Брагг — ост­рое лихорадочное заболевание с экзантемой.

Заболевание начинается остро, протекает с повышенной температурой, озно­бом, головными болями, кашлем с мокротой.

Эпидемиология: обитают в водоемах, системах водоснабжения.

Иммунитет: выраженный клеточ­ный характер, штаммоспецифичен.

Микробиологическая диагностика: микробиологические и се­рологические исследования: обнаружение на 2е сутки антигенов в крови и в моче (в ИФА, РИА с помошью моноклональных антител), обнаружение через 1-3 недели антител в крови (ИФА). Применяют генодиагностику (ПЦР), а также выявление возбудителя в мокроте, слизи, биоптатах.

Лечение: Антибиотики: (эритро­мицин + рифампицин).Фторхинолоны.

Профилактика. Специфической нет. Неспецифичес­кая – сан.-гиг. профилактика.

2. Токсины бактерий, их природа, свойства, получение.

Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины. Экзотоксины продуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов. По молекулярной организации экзотоксины делятся на две группы:

• экзотоксины состоящие из двух фрагментов;

• экзотоксины, составляющие единую полипептидную цепь.

По степени связи с бактериальной клетки экзотоксины делятся условно на три класса.

• Класс А - токсины, секретируемые во внешнюю среду;

• Класс В - токсины частично секретируемые и частично связанные с микробной клеткой;

• Класс С - токсины, связанные и с микробной клеткой и попадающие в окружающую среду при разрушении клетки.

Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток.

Эндотоксины по своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК). Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами. При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин. Патогенность бактерий контролируется тремя типами генов: гены - собственной хромосомами, гены привнесенные плазмидами умеренными фагами.

3. Методы и цели выделения чистых культур бактерий.

Чистой культурой называется популяция бактерий од­ного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты — биовары. Биовары, различающие­ся по биохимическим свойствам, называют хемоварами, по анти­генным свойствам — сероварами, по чувствительности к фагу — фаговарами. Культуры микроорганизмов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называют штаммами, которые обычно обозначаются номерами или какими-либо сим­волами. Чистые культуры бактерий в диагностических бактерио­логических лабораториях получают из изолированных колоний, пересевая их петлей в пробирки с твердыми или, реже, жидкими питательными средами.

Колония представляет собой видимое изолированное скоп­ление особей одного вида микроорганизмов, образующееся в результате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее). Колонии бактерий разных видов отличаются друг от друга по своей мор­фологии, цвету и другим признакам.

Чистую культуру бактерий получают для проведения диагно­стических исследований — идентификации, которая достигается путем определения морфологических, культуральных, биохимиче­ских и других признаков микроорганизма.

Морфологические и тинкториальные признаки бактерий изучают при микроскопическом исследовании мазков, окрашенных разными методами, и нативных препаратов.

Культуральные свойства характеризуются питатель­ными потребностями, условиями и типом роста бактерий на плот­ных и жидких питательных средах. Они устанавливаются по мор­фологии колоний и особенностям роста культуры.

Биохимические признаки бактерий определяются на­бором конститутивных и индуцибельных ферментов, присущих определенному роду, виду, варианту. В бактериологической прак­тике таксономическое значение имеют чаще всего сахаролитические и протеолитические ферменты бактерий, которые определя­ют на дифференциально-диагностических средах.

При идентификации бактерий до рода и вида обращают вни­мание на пигменты, окрашивающие колонии и культуральную среду в разнообразные цвета. Например, красный пигмент обра­зуют Serratia marcescens, золотистый пигмент — Staphylococcus aureus (золотистый стафилококк), сине-зеленый пигмент — Pseu-domonas aeruginosa.

Для установления биовара (хемовара, серовара, фаготипа) проводят дополнительные исследования по выялвениб соответствующего маркера – определению фермента, антигена, чувствительности к Фанам.

Методы выделения чистых культур бакте­рий.

Универсальным инструментом для производства посевов явля­ется бактериальная петля. Кроме нее, для посева уколом при­меняют специальную бактериальную иглу, а для посевов на чашках Петри — металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пасте­ровские и градуированные пипетки. Первые предварительно из­готовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец ка­пилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец за­крывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.

При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая дру­гими пальцами той же руки петлю, набирают ею посевной ма­териал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней ча­сти среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надг писывают, указывая дату посева и характер посевного мате­риала (номер исследования или название культуры).

Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, пет­лей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горел­ки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

Билет № 13

Билет № 13

Билет № 13

1. Возбудители шигеллёза. Таксономия. Характеристика. Микробиологическая диагностика. Принципы профилактики и лечения.

Род Shigella включает 4 вида: S. dysenteriae12 сероваров, S.flexneri — 9 сероваров, S. boydii — 18 сероваров, S. sonnei1 серовар.

Морфология. Шигеллы представле­ны неподвижными палочками. Спор и капсул не образуют.

Культуральные свойства. Хорошо культи­вируются на простых питательных средах. На плотных средах образуют мелкие глад­кие, блестящие, полупрозрачные колонии; на жидких — диффузное помутнение. Жидкой средой обогащения является селенитовый бу­льон. У S. sonnei отмечена при росте на плот­ных средах S R-диссоциация.

Биохимическая активность: слабая; отсутствие газообразования при фермента­ции глюкозы, отсутствие продукции сероводорода, отсутствие ферментации лактозы.

Резистентность. Наиболее неустойчив во внешней среде вид S. dysenteriae. Шигеллы переносят высушивание, низкие темпе­ратуры, быстро погибают при нагревании. S. sonnei в молоке способны не только длительно пере­живать, но и размножаться. У S. dysenteriae отмечен переход в некультивируемую форму.

Антигенная структура. Соматический О-антиген, в зависи­мости от строения которого происходит их подразделение на серовары, a S. flexneri внут­ри сероваров подразделяется на подсеровары. S. sonnei обладает антигеном 1-й фазы, кото­рый является К-антигеном.

Факторы патогенности. Способность вызывать инвазию с пос­ледующим межклеточным распространением и размножением в эпителии слизистой толстого кишечника. Функци­онирование крупной плазмиды инвазии, кото­рая имеется у всех 4 видов шигелл. Плазмида инвазии детерминирует синтез белков, входящих в состав наружной мембраны, которые обеспечивают процесс ин­вазии слизистой. Продуцируют шига и шигаподобные белковые токсины. Эндотоксин защищает шигеллы от дейс­твия низких значений рН и желчи.

Эпидемиология: Заболевания - шигеллезы, антропонозы с фекально-оральным механизмом переда­чи. Заболевание, вызываемое S. dysenteriae, имеет контактно-бытовой путь передачи. S. flexneri — водный, a S. sonnei — алиментар­ный.

Патогенез и клиника: Инфекционные заболева­ния, характеризующиеся поражением толсто­го кишечника, с развитием колита и интокси­кацией.

Шигеллы взаимодействуют с эпителием слизистой тол­стой кишки. Прикрепляясь инвазинами к М-клеткам, шигеллы поглощаются макрофагами. Взаимодействие шигелл с макрофагами при­водит к их гибели, следствием чего является выделение ИЛ-1, который инициирует воспа­ление в подслизистой. При гибели шигелл происходит выделение шига токсинов, действие которых приводит к появлению крови в испражнениях.

Иммунитет. Секреторные IgA, пре­дотвращающие адгезию, и цитотоксическая антителозависимая активность лимфоцитов.

Микробиологическая диагностика.

Бактериологи­ческий: материалом для исследования - испражнения. Для посева отбираются гнойно-кровяные образования из кала, которые при диагностике заболевания высеваются на лактозосодержащие дифференциальные питательные плотные среды. В случае выявления бактерионосителей посев испражнений проводится в селенитовый бульон с выделением возбудителя на плотных лактозосодержащих дифференциаль­ных питательных средах. Среди выросших на этих средах отбирают лактозонегативные ко­лонии, которые идентифицируют до вида и се­ровара, а выделенные культуры S. flexneri — до подсероваров, S. sonneiдо хемоваров. В качестве вспомогательного используют сероло­гический метод с постановкой РНГА.

Лечение и профилактика: Для лечения - бактериофаг орального применения, ан­тибиотики после определения антибиотикограммы; в случае возникновения дисбактерио­за — препараты пробиотиков для коррекции микрофлоры. Не специфическая профилак­тика.

2. Иммунологическая память. Иммунологическая толерантность.

Иммунологическая память. При повторной встрече с антигеном орга­низм формирует более активную и быструю иммунную реакцию — вторичный иммунный ответ. Этот феномен получил название имму­нологической памяти.

Иммунологическая память имеет высо­кую специфичность к конкретному анти­гену, распространяется как на гуморальное, так и клеточное звено иммунитета и обус­ловлена В- и Т-лимфоцитами. Она обра­зуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.

На сегодняшний день рассматривают два наиболее вероятных механизма формирова­ния иммунологической памяти. Один из них предполагает длительное сохранение анти­гена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под­держивая в напряжении иммунную систему. Вероятно также наличие долгоживущих де­ндритных АПК, способных длительно сохра­нять и презентировать антиген.

Другой механизм предусматривает, что в про­цессе развития в организме продуктивного им­мунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые по­коящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе­цифичностью к конкретной антигенной детер­минанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего про­исхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и под­держания его длительное время на защитном уровне. Осуществляют это 2—3-кратными при­вивками при первичной вакцинации и перио­дическими повторными введениями вакцинно­го препарата — ревакцинациями.

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быст­рую и бурную реакцию — криз отторжения.

Иммунологическая толе­рантность — явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличает­ся специфичностью — она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена.

Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития имму­нологической толерантности:

1. Элиминация из организма антигенспецифических клонов лимфоцитов.

2. Блокада биологической активности им-мунокомпетентных клеток.

3. Быстрая нейтрализация антигена анти­телами.

Феномен иммунологической толерантнос­ти имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка ор­ганов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патоло­гических состояний, связанных с агрессив­ным поведением иммунной системы.

3. Медицинская биотехнология, ее задачи и достижения.

Биотехнология представляет собой область знаний, которая воз­никла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потреб­ностями общества в новых, более дешевых продуктах для на­родного хозяйства, в том числе медицины и ветеринарии, а также в принципиально новых технологиях. Биотехнология — это получение продуктов из био­логических объектов или с применением биологических объек­тов. В качестве биологических объектов могут быть использова­ны организмы животных и человека (например, получение им­муноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные орга­ны (получение гормона инсулина из поджелудочных желез круп­ного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Однако в качестве биологических объектов чаще всего используют одноклеточные микроорганиз­мы, а также животные и растительные клетки.

Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют но­вые продукты и выделяют метаболиты, обладающие разнообраз­ными физико-химическими свойствами и биологическим дей­ствием.

Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается в конечный продукт. С помощью биотехнологии получают мно­жество продуктов, используемых в различных отраслях:

• медицине (антибиотики, витамины, ферменты, аминокисло­ты, гормоны, вакцины, антитела, компоненты крови, диаг­ностические препараты, иммуномодуляторы, алкалоиды, пи­щевые белки, нуклеиновые кислоты, нуклеозиды, нуклеоти-ды, липиды, антиметаболиты, антиоксиданты, противоглис­тные и противоопухолевые препараты);

• ветеринарии и сельском хозяйстве (кормовой белок: кормо­вые антибиотики, витамины, гормоны, вакцины, биологичес­кие средства защиты растений, инсектициды);

• пищевой промышленности (аминокислоты, органические кис­лоты, пищевые белки, ферменты, липиды, сахара, спирты, дрожжи);

• химической промышленности (ацетон, этилен, бутанол);

• энергетике (биогаз, этанол).

Следовательно, биотехнология направлена на создание диаг­ностических, профилактических и лечебных медицинских и ве­теринарных препаратов, на решение продовольственных вопро­сов (повышение урожайности, продуктивности животноводства, улучшение качества пищевых продуктов — молочных, кондитер­ских, хлебобулочных, мясных, рыбных); на обеспечение мно­гих технологических процессов в легкой, химической и других отраслях промышленности. Необходимо отметить также все воз­растающую роль биотехнологии в экологии, так как очистка сточных вод, переработка отходов и побочных продуктов, их деградация (фенол, нефтепродукты и другие вредные для окру­жающей среды вещества) осуществляются с помощью микро­организмов.

В настоящее время в биотехнологии выделяют медико-фарма­цевтическое, продовольственное, сельскохозяйственное и эколо­гическое направления. В соответствии с этим биотехнологию можно разделить на медицинскую, сельскохозяйственную, про­мышленную и экологическую. Медицинская в свою очередь под­разделяется на фармацевтическую и иммунобиологическую, сель­скохозяйственная — на ветеринарную и биотехнологию расте­ний, а промышленная — на соответствующие отраслевые направ­ления (пищевая, легкая промышленность, энергетика и т. д.).

Биотехнологию также подразделяют на традиционную (ста­рую) и новую. Последнюю связывают с генетической инжене­рией. Общепризнанное определение предмета «биотехнология» от­сутствует и даже ведется дискуссия о том, наука это или про­изводство.