Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экзамен / Ответы на Экзаменационный Билеты по Микробиологии

.doc
Скачиваний:
725
Добавлен:
19.06.2017
Размер:
1.99 Mб
Скачать

Билет № 33

Билет № 33

Билет № 33

1. Классификация грибов. Характеристика. Роль грибов в патологии человека. Микробиологическая диагностика микозов. Специфическое лечение.

Царство Fungi. Многоклеточные/однокле­точные нефотосинтезирующие микроорганизмы с клеточной стен­кой. Являются эукариотами.

Грибы имеют ядро с ядерной оболочкой, ци­топлазму с органеллами, цитоплазматическую мембрану и многослойную, ригидную клеточ­ную стенку, состоящую из нескольких типов по­лисахаридов, а также белка, липидов. Цитоплазматическая мембрана содержит гликопротеины, фосфолипиды и эргостеролы. Грибы являются грамположительными микро­бами, вегетативные клетки — некислотоустой­чивые. Тело гриба называется талломом.

Различают два основных типа грибов: гифальный и дрожжевой.

Гифальные (плесневые) грибы образуют ветвящиеся тонкие нити (гифы), сплетающиеся в или мицелий. Гифы низших грибов не имеют перегородок. Они представле­ны многоядерными клетками. Гифы высших грибов разделены пе­регородками с отверстиями.

Дрожжевые грибы имеют вид отдельных овальных клеток. Одноклеточные грибы, которые по типу полового размножения распреде­лены среди высших грибов — аскомицет и базидиомицет. При бесполом размножении дрожжи образуют почки или делятся, что приводит к одноклеточному росту.

Среди грибов, имеющих медицинское зна­чение, выделяют 3 типа: зигомицеты (Zygomycota), acкомицеты (Ascomycota) и базидиомицеты (Basidiomycota).

Зигомицеты: низшие грибы, вызывают зигомикоз легких, головного мозга.

Аскомицеты: высшие совершенные грибы, к ним относится возбудитель эрготизма, паразитирующий на злаках. Микозы, дерматомикозы, пневмония, кератоз, аспергиллез.

Базидиомицеты: шляпочные грибы. Болезни: отравление ядовитыми грибами, криптококкоз.

Дейтеромицеты: несовершенные грибы, род Candida, поражающие слизистые оболочки и внутренние органы.

Заболевания:

1. Поверхностные микозы (кератомикозы) — поражения поверхностных слоев кожи и волос:Malassezia furfur, Cladosporium.

2.Эпидермофитии (эпидермомикозы) — поражения эпидермиса, кожи и волос:Epidermophyton floccosum,Microsporum canis.

3.Подкожные, вовлекающие в процесс дерму, подкожные ткани, мышцы: Sportrichum schenckii.

4.Системные, или глубокие, микозы, при которых поражаются внутренние органы и ткани: Coccidioides immitis, Histoplasma capsulatum/

5. Оппортунистические микозы: Candida, Aspergillus, Mucor.

6. Аллергии, вызванные грибами (пневмоаллергии и дермоаллергии).

7. Микотоксикозы — пищевые интоксика­ции, вызванные токсинами грибов.

Лабораторная диагностика: микроскопическое, микологическое, аллергическое, серологическое исследования.

Материал для исследования: гной, мокрота, волосы, кожа, кровь.

Микроскопическое: микроскопия нативных препаратов: изучение строения гриба, расположение спор, культуральная принадлежность.

Для окраски – методы Грамма, Романовского, Циля-Нильсена.

Культуральное (микологическое) исследование: выделение чистой культуры, плотные, жидкие пит. среды.

Серологическое реакции: для диагностики грибковых заболеваний, с грибковыми АГ. (РА, РСК,РНГА,РИФ).

Аллергические пробы – в/к введение аллергенов.

Лечение: поверхностных микозов: удаление пораженных участков с помощью кератолитических средств. Препараты, содержащие дисульфид селена, тиосульфат. Эпидермофитии: противогрибковая терапия, гризеофульвин, антимикотики. Кетоконазол. Амфотерицин В. При кандидозе: нистатин, леворин.

2. Механизмы передачи генетического материала у бактерий.

Конъюгация бактерий состоит в переходе генети­ческого материала (ДНК) из клетки-донора («мужской») в клет­ку-реципиент («женскую») при контакте клеток между собой.

Мужская клетка содержит F-фактор, или половой фактор, который контролирует синтез так называемых половых пилей, или F-пилей. Клетки, не содержа­щие F-фактора, являются женскими; при получении F-фактора они превращаются в «мужские» и сами становятся донорами. F-фактор располагается в цитоплазме в виде кольцевой двунитчатой молекулы ДНК, т. е. является плазмидой. Молекула F-фак­тора значительно меньше хромосомы и содержит гены, контро­лирующие процесс конъюгации, в том числе синтез F-пилей. При конъюгации F-пили соединяют «мужскую» и «женскую» клетки, обеспечивая переход ДНК через конъюгационный мостик или F-пили. Клетки, содержащие F-фактор в цитоплазме, обозначаются F+; они передают F-фактор клеткам, обозначае­мым F" («женским»), не утрачивая донорской способности, так как оставляют копии F-фактора. Если F-фактор включается в хромосому, то бактерии приобретают способность передавать фрагменты хромосомной ДНК и называются Hfr-клетками (от англ. high frequency of recombination — высокая частота реком­бинаций), т.е. бактериями с высокой частотой рекомбинаций. При конъюгации клеток Hfr и клеток F" хромосома разрывается и передается с определенного участка (начальной точки) в клет­ку F", продолжая реплицироваться. Перенос всей хромосомы может длиться до 100 мин.

Переносимая ДНК взаимодействует с ДНК реципиента — происходит гомологичная рекомбинация. Прерывая процесс конъ­югации бактерий, можно определять последовательность распо­ложения генов в хромосоме. Иногда F-фактор может при выхо­де из хромосомы захватывать небольшую ее часть, образуя так называемый замещенный фактор — F'.

При конъюгации происходит только частичный перенос ге­нетического материала, поэтому ее не следует отождествлять пол­ностью с половым процессом у других организмов.

Трансдукция — передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают неспецифическую (общую) трансдукцию, при которой возможен перенос любого фрагмен­та ДНК донора, и специфическую — перенос определен­ного фрагмента ДНК донора только в определенные участки ДНК реципиента. Неспецифическая трансдукция обусловлена включе­нием ДНК донора в головку фага дополнительно к геному фага или вместо генома фага (дефектные фаги). Специфическая транс­дукция обусловлена замещением некоторых генов фага генами хромосомы клетки-донора. Фаговая ДНК, несущая фрагменты хромосомы клетки-донора, включается в строго определенные участки хромосомы клетки-реципиента. Таким образом, привно­сятся новые гены и ДНК фага в виде профага репродуцируется вместе с хромосомой, т.е. этот процесс сопровождается лизоге-нией. Если фрагмент ДНК, переносимый фагом, не вступает в рекомбинацию с хромосомой реципиента и не реплицируется, но с него считывается информация о синтезе соответствующего про­дукта, такая трансдукция называется абортивной.

Трансформация заключа­ется в том, что ДНК, выделенная из бактерий в свободной ра­створимой форме, передается бактерии-реципиенту. При транс­формации рекомбинация происходит, если ДНК бактерий род­ственны друг другу. В этом случае возможен обмен гомологич­ных участков собственной и проникшей извне ДНК. Впервые явление трансформации описал Ф. Гриффите (1928). Он вводил мышам живой невирулентный бескапсульный R-штамм пневмо­кокка и одновременно убитый вирулентный капсульный S-штамм пневмококка. Из крови погибших мышей был выделен вирулен­тный пневмококк, имеющий капсулу убитого S-штамма пнев­мококка. Таким образом, убитый S-штамм пневмококка передал наследственную способность капсулообразования R-штамму пнев­мококка. О. Эвери, К. Мак-Леод и М. Мак-Карти (1944) дока­зали, что трансформирующим агентом в этом случае является ДНК. Путем трансформации могут быть перенесены различные признаки: капсулообразование, устойчивость к антибиотикам, синтез ферментов.

Изучение бактериальной трансформации позволило установить роль ДНК как материального субстрата наследственности. При изучении генетической трансформации у бактерий были разра­ботаны методы экстракции и очистки ДНК, биохимические и биофизические методы ее анализа.

3. Анатоксины. Получение, очистка, титрование, применение.

В процессе культивирования природных патогенных микробов можно получить протективный антиген, синтезируемый этими бактериями токсин затем превращается в анатоксин, сохраняющий специфическую антигенность и иммуногенность. Анатоксины являются одним из видов молекулярных вакцин. Анатоксины – препараты, полученные из бактериальных экзотоксинов, полностью лишенные своих токсических свойств, но сохранившие антигенные и иммуногенные свойства. Получение: токсигенные бактерии выращивают на жидких средах, фильтруют с помощью бактериальных фильтров для удаления микробных тел, к фильтрату добавляют 0,4% формалина и выдерживают в термостате при 30-40t на 4 недели до полного исчезновения токсических свойств, проверяют на стерильность, токсигенность и иммуногенность. Эти препараты называются нативными анатоксинам, в настоящее время почти не используются, т. к. содержат большое количество балластных веществ, неблагоприятно влияющих на организм. Анатоксины подвергаю физической и химической очистке, адсорбируют на адъювантах. Такие препараты называются адсорбированными высокоочищенными концентрированными анатоксинами.

Титрование анатоксинов в реакции фолликуляции производят по стандартной фолликулирующей атитоксической сыворотке, в которой известно количество антитоксических единиц. 1 антигенная единица анатоксина обозначается Lf, это то количество анатоксина, которое вступает в реакцию фолликуляции с 1 единицей дифтерийного анатоксина.

Анатоксины применяются для профилактики и реже, для лечения токсинемических инфекций дифтерия, газовая гангрена, ботулизм, столбняк). Так же анатоксины применяются для получения антитоксических сывороток путем гипериммунизации животных.

Примеры препаратов: АКДС, АДС, адсорбированный стафилококковый анатоксин, ботулинистический анатоксин, анатоксины из экзотоксинов возбудителей газовых инфекций.

Билет № 34

Билет № 34

Билет № 34

1. Возбудители малярии. Таксономия. Характеристика. Микробиологическая диагностика. Специфическое лечение.

Таксономия: тип Apicomplexa, класс Sporozoa, отряд Eucoccidiida, подотряд Haemosporina и виды: Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, Plasmodium falciparum..

Характеристика возбудителя. Жизненный цикл плазмодиев происходит со сменой хо­зяев: в комаре рода Anopheles (окончательном хозяине) осуществляется половое размноже­ние (образование спорозоидов), а в организме чело­века (промежуточном хозяине) происходит бесполое размножение — шизогония, при которой образуются мелкие клетки — мерозоиты.

После укуса спорозоиты из слюнных желез комара попадают в кровь и далее в гепатоциты, где совершается первый этап размножения — тка­невая шизогония. При этом в гепатоцитах спорозоит переходит в стадию тканевого шизонта (делящаяся клетка). Тканевой шизонт делится с образованием тканевых мерозоитов, поступающих в кровь. Мерозоиты проникают в эритро­циты, в которых совершается несколько цик­лов шизогонии. Из мерозоита в эритроците развиваются трофозоиты — расту­щие формы паразита: кольцевидный трофозоит юный, полувзрослый, взрослый трофозоит. Взрослый трофозоит превращается в много­ядерный шизонт. В эритроцитах мерозоиты дают также начало образованию половых незрелых форм — мужских и женских гамет (гамонтов), которые способны инфицировать ко­маров при кровососании больного малярией.

P. vivax — возбудитель трехдневной маля­рии. В эритроците, при окраске мазка из кро­ви по Романовскому—Гимзе, трофозоит имеет форму кольца — крупная вакуоль в центре с голубой цитоплазмой с рубиново-красным ядром.

P. malariae — возбудитель четырехднев­ной малярии. В эритроците выявляется один трофозоит в ста­дии кольца.

P.falciparumвозбудитель тропической ма­лярии, наличие юных форм па­разита в виде мелких колец в эритроците.

P. ovate — возбудитель трехдневной малярии, паразит в стадии кольца в эритроците имеет более круп­ное ядро, чем P. vivax.

Эпидемиология: источник - человек. Механизм заражения – трансмиссивный, через укус комара.

Патогенез и клиника: Инкубационный пери­од от недели до года. Клинические проявления обусловлены эритроцитарной шизогонией. Малярии свойственно присту­пообразное течение: озноб с сильной голо­вной болью сменяется подъемом температуры до 40С, после чего происходит быстрое снижение температуры с обильным потоотделением и выраженной слабостью. Малярийный приступ вызван выбросом пирогенных веществ из разрушенных эритро­цитов. Приступы приводят к поражению печени, селезенки и почек.

Иммунитет: нестойкий видоспецифический, стадиоспецифический, нестерильный иммунитет.

Микробиологическая диагностика основана на микроскопичес­ком исследовании препаратов крови, окрашенных по Романовскому—Гимзе и обнаруже­нии различных форм возбудителя (красное ядро, голубая цитоплазма). Для обнаружения ДНК паразита в крови ис­пользуют ДНК-гибридизацию и ПЦР В сероло­гическом методе применяют РИФ, РПГА, ИФА.

Лечение: Противомалярийные препараты (хинин, мефлохин, хлорохин). Различают пре­параты шизонтоцидного, гамонтотропного и спорозоитотропного действия.

Профилактика: лечение больных малярией и паразитоносителей, уничтожение переносчиков возбудителя — комаров. Разрабатываются вакцины на основе антигенов, полученных генно-инженерным методом (антиспорозоитная антимерозоитная, антигамонтная).

2. Иммунокомпетентные клетки: Т и В – лимфоциты, макрофаги, их кооперация.

Иммунокомпетентные клетки - клетки, способные специфически распознавать антиген и отвечать на него иммунной реакцией. Такими клетками являются Т- и В-лимфоциты (тимусзависимые и костномозговые лимфоциты), которые под влиянием чужеродных агентов дифференцируются в сенсибилизированный лимфоцит и плазматическую клетку.

Т-лимфоциты – это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. Т-лимфоциты разделяются на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа выполняют Т-хелперы. Эффекторную функцияю осуществляют Т-киллеры и естественные киллеры. В орагнизме Т-лимфоциты обеспечивают клеточные формы иммунного ответа, определяют силу и продолжительность иммунной реакции.

B-лимфоциты – преимущественно эффекторные иммунокомпетентные клетки. Зрелые В-лимфоциты и их потомки – плазматические клетки являются антителопродуцентами. Их основными продуктами являются иммуноглобулины. В-лимфоциты участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.

Макрофаги - клетки соединительной ткани, способные к активному захвату и перевариванию бактерий, остатков клеток и других чужеродных для организма частиц. Основная функция макрофагов сводится к борьбе с теми бактериями, вирусами и простейшими, которые могут существовать внутри клетки-хозяина, при помощи мощных бактерицидных механизмов. Роль макрофагов в иммунитете исключительно важна - они обеспечивают фагоцитоз, переработку и представление антигена T-клеткам.

Кооперация иммунокомпетентных клеток. Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в печение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС.

Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген.

Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусза-висимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы секретируют γ-интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях; привлекают к месту соприкосновения с ними цитоплазма-тические гранулы; повреждают мембраны мишеней после экзоцитоза их содержимого.

В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров.

Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов.

Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток.

Цитокины. Все процессы кооперативных взаимодействий им-мунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре цитокины являются протеинами, а по эффекту действия — медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается.

3. Тинкториальные свойства бактерий. Простые и сложные методы окраски.

Методы окраски. Окраску мазка производят просты­ми или сложными методами. Простые за­ключаются в окраске препарата одним красителем; сложные методы (по Граму, Цилю — Нильсену и др.) включают последо­вательное использование нескольких красителей и имеют диффе­ренциально-диагностическое значение. Отношение микроорганиз­мов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений.

При простых методах мазок окрашивают каким-либо одним красителем, ис­пользуя красители анилинового ряда (основные или кис­лые). Если красящий ион (хромофор) — катион, то краситель обладает основными свойствами, если хромо­фор - анион, то краситель имеет кислые свойства. Кис­лые красители — эритрозин, кислый фуксин, эозин. Ос­новные красители — генциановый фиолетовый, кристал­лический фиолетовый, метиленовый синий, основной фуксин. Преимущественно для окраски микроорганизмов используют основные красители, которые более интенсивно связываются кислыми компонентами клетки. Из сухих красителей, продающихся в виде порошков, готовят на­сыщенные спиртовые растворы, а из них — водно-спирто­вые, которые и служат для окрашивания микробных кле­ток. Микроорганизмы окрашивают, наливая краситель на поверхность мазка на определенное время. Окраску основным фуксином ведут в течение 2 мин, метиленовым синим — 5—7 мин. Затем мазок промывают водой до тех пор, пока стекающие струи воды не станут бесцветными, высушивают осторожным промоканием фильтровальной бумагой и микроскопируют в иммерсионной системе. Ес­ли мазок правильно окрашен и промыт, то поле зрения совершенно прозрачно, а клетки интенсивно окрашены.

Сложные методы окраски применяют для изуче­ния структуры клетки и дифференциации микроорганиз­мов. Окрашенные мазки микроскопируют в иммерсион­ной системе. Последовательно нанести на препа­рат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др.

Существуют несколько основных окрасок: по Граму, по Цилю-Нельсону, по Ауески, Нейссера, Бури-Гинса.

Механизм и этапы окраски по Граму

1. На фиксированный мазок нанести карболово-спиртовой раствор генцианового фиолетового через полоску фильтровальной бумаги. Через 1-2 мин снять ее, а краситель слить.

2. Нанести раствор люголя на 1-2 мин (йод)

3. Обесцветить этиловым спиртом в течении 30-60 с до прекращения отхождения фиолетовых струек красителя.

4. Промыть водой

5. Докрасить водным р-ом фуксина в течении 1-2 мин, промыть водой, высушить и микроскопировать.

* Грамположительные бактерии окрашиваются в темно-фиолетовый цвет, грамотрицательные - в красный.

Механизм и этапы окраски по Цилю-Нельсону

1. На фиксированный мазок нанести карболовый р-р фуксина через полоску фильтровальной бумаги и подогреть до появления паров в течении 3-5 мин

2. Снять бумагу, провыть мазок водой

3. Нанести 5% р-р серной кислоты или 3% р-р смеси спирта с хлороводородной кислотой на 1-2 мин для обесцвечивания.

4. Промыть водой

5. Докрасить мазок водным р-ом метиленового синего в течении 3-5 мин

6. Промыть водой, высушить и микроскопировать

* Некислоустойчивые – обесцвечиваются и окр. метиленовым синим в голубой цвет, а кислоустойчивые остаются окрашенными фуксином в красный.

Билет № 35

Билет № 35

Билет № 35

1. Возбудитель бешенства. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика.

Таксономия: РНК-содержащий вирус, семейство Rhabdoviride, род Lyssavirus.

Морфология и антигенные свойства. Вирион имеет форму пули, состоит из сердцевины (РНП(рибонуклеопротеин) спи­рального типа и матриксного белка), окру­женной липопротеиновой оболочкой с гликопротеиновыми шипами. Гликопротеин G отвечает за адсорбцию и внедрение вируса в клетку, обладает антигенными (типоспецифический антиген) и иммуногенными свойс­твами. Антитела к нему нейтрализуют вирус и выявляются в РН(рекция нейтрализации). РНП состоит из геномной однонитевой линейной минус-РНК и бел­ков: N-белка, L-белка и NS-белка. РНП является группоспецифическим антигеном; выявляется в РСК, РИФ, РП.

Различают два вируса бешенства: дикий вирус, циркулирующий среди животных, патогенный для человека; фиксированный – не патогенный для человека.

Культивирование. Вирус культивируют путем внутримозгового заражения лабораторных животных (мышей, крыс) и в культуре клеток: фибробластов человека, кури­ного эмбриона. В нейронах головного мозга заражен­ных животных образуются цитоплазматические включения, содержащие антигены виру­са (тела Бабеша-Негри – эозинофильные включения).

Резистентность: Вирус бешенства неустой­чив: быстро погибает под действием солнеч­ных и УФ-лучей, а также при нагревании до 60С. Чувствителен к дезинфицирующим веществам, жирорастворителям, щелочам и протеолитическим ферментам.

Эпидемиология. Источниками инфекции в природных очагах являются волки, грызуны. Вирус бешенства накапливается в слюнных железах больного животного и выделяется со слюной. Животное заразно в последние дни инкубационного периода (за 2—10 дней до клинических проявлений болезни). Механизм передачи возбудителя — контактный при уку­сах. Иногда заболевание развивается при употреблении мяса больных животных или при трансплантации инфици­рованных тканей (роговицы глаза).

У собаки после инкубационного перио­да (14дн.) появляются возбуждение, обильное слюнотечение, рвота, водобоязнь. Она грызет место укуса, бросается на людей, животных. Через 1—3 дня наступают паралич и смерть животного.

Патогенез и клиника. Вирус, попав со слюной больного животного в поврежденные наружные покровы, реплицируется и персистирует в месте внедрения. Затем возбудитель распространяется по аксонам периферических нервов, достигает клеток головного и спинного мозга, где размно­жается. Клетки претерпевают дистрофические, воспалительные и дегенеративные изменения. Размножившийся вирус попадает из мозга по центробежным нейронам в различные ткани, в том числе в слюнные железы. Инкубационный период у человека при бешенстве — от 10 дней до 3 месяцев. В начале заболевания появляются недомогание, страх, беспокойство, бессонница, затем развиваются рефлекторная возбудимость, спазматические сокращения мышц глотки и гортани.

Иммунитет: Человек относительно ус­тойчив к бешенству. Постинфекционный иммунитет не изучен, так как больной обычно погибает. Введение людям, укушенным бешеным животным, инактивированной антирабической вакцины вызывает выработку антител, интерферонов и активацию клеточного иммунитета.

Микробиологическая диагностика: Постмортальная диагностика включает об­наружение телец Бабеша—Негри в мазках-отпечатках или срезах из ткани мозга, а также выделение вируса из моз­га и подчелюстных слюнных желез. Тельца Бабеша—Негри выявляют методами окраски по Романовскому—Гимзе. Вирусные антигены в клет­ках обнаруживают с помощью РИФ.

Выделяют вирус из патологического мате­риала путем биопробы на мышах: заражают интрацеребрально. Идентификацию вирусов проводят с помо­щью ИФА, а также в РН на мышах, используя для нейтрализации вируса антирабический иммуноглобулин.

Прижизненная диагностика основана на ис­следовании: отпечатков роговицы, биоптатов кожи с помощью РИФ; выделении вируса из слюны, цереброспинальной и слезной жидкос­ти путем интрацеребрального инфицирования мышей. Возможно определение ан­тител у больных с помощью РСК, ИФА.

Лечение. Симптоматическое; эффективное лечение отсутствует.

Профилактика. Выявление, уничтожение жи­вотных. Иммунизация антирабической вакциной собак. Специфическую профилактику проводят антирабической вакциной и антирабической сывороткой или иммуноглобулином. Инактивированная УФ- или гамма лучами культуральная вакцина. С лечебно–профилактической целью иммунизируют людей; формируется активный иммунитет.

2. Понятие о клинической микробиологии. Роль условно-патогенных микроорганизмов в патологии человека.

Клиническая микробиология — это раздел медицинской микробиологии, изучающий взаимоотношения, складывающиеся между макро- и микроорганизмами в норме, при патологии, в динамике воспалительного процесса с учетом проводимой терапии до констатации клиницистом состояния кли­нического или полного выздоровления.

Задачи клинической микробиологии близки к тем задачам, которые стоят перед медицинс­кой микробиологией. Их специфика определя­ется лишь тем, что клиническая микробиоло­гия исследует одну группу микробов— УПМ, одну группу заболеваний — оппортунистичес­кие инфекции и одну антропогенную экосис­тему — больничные учреждения.

Исходя из этого, задачами клинической микробиологии являются:

1. Изучение биологии и роли УПМ в этио­логии и патогенезе ГВЗ человека.

2. Разработка и использование методов микробиологической диагностики, специфи­ческой терапии и профилактики микробных заболеваний, встречающихся в неинфекци­онных стационарах.

3. Исследование микробиологических ас­пектов проблем ВБИ, дисбактериоза, лекарс­твенной устойчивости микробов.

4. Микробиологическое обоснование и контроль за антимикробными мероприятия­ми в больничных стационарах.

Условно – патогенныеэто микробы, оказывающие болезнетворное воздействие на микроорганизм при определенных условиях, т.е. когда они попадают во внутреннюю среду макроорганизма в больших количествах на фоне резкого снижения резистентности макроорганизма. К ним относятся представители нормальной микрофлоры человека или свободно-живущие микробы, способные вызывать инфекционные болезни. В отличие от патогенных микробов, болезнь макроорганизма для них не является необходимым условием существования. Для заболеваний, вызванных условно – патогенными микробами, характерно широкое распространение в больницах – формируются госпитальные штаммы.

3. Агглютинирующие адсорбированные сыворотки. Приготовление, применение.

В диагностике инфекционных болезней широко применя­ются иммунные реакции при идентификации возбудителя: при установлении родовой, видовой и типовой принадлежности микроба (вируса). Для постановки таких реакций необходимы специфические диагностические сыворотки, которые в зависи­мости от содержания соответствующих антител называются агглютинирующие, преципитирующие, гемо­литические, противовирусные.

Агглютинирующие сыворотки. Агглютинирующую сыворотку получают иммунизацией Кроликов (внутривенно, подкожно или внутрибрюшинно) взвесью убитых бактерий, начиная с дозы 200 млн., затем 500 млн., 1 млрд., 2 млрд., микробных тел в 1 мл, с интервалами 5 дней. Через 7—8 дней после последней иммунизации берут кровь и определяют титр антител. Титром агглютини­рующей сыворотки называется то макси­мальное разведение сыворотки, при котором происходит агглютинация с соответствую­щим микроорганизмом.

Агглютинирующие сыворотки применяются при идентифи­кации микроба в развернутой реакции агглютинации. Если изучаемый микроорганизм агглютинируется сывороткой до титра или до половины значения титра, его можно считать принадлежащим к тому виду, название которого указано на этикетке ампулы.

Неадсорбированные агглютинирующие сыворотки облада­ют высоким титром — до 1 : 12 800 — 1 : 25 600.

Недостатком таких сывороток является то, что они способ­ны давать групповые реакции агглютинации, так как они содержат антитела к бактериям, имеющим общие антигены в пределах семейства, группы и рода.

Поэтому в настоящее время большинство агглютинирую­щих сывороток выпускаются адсорбированиими, монорецепторными и адсорбированными поливалентными, содер­жащими только типовые или видовые антитела и соответст­вующими или определенному типу или виду микроорганизма. Эти сыворотки не подлежат разведению.

Для получения таких сывороток нрименяют метод Кастелляни — метод адсорбции, который состоит в том, что при насыщении агглютинирующей сыворотки родственны­ми гетерогенными бактериями происходит адсорбция группоных антител, а специфические антитела остаются в сыворот­ке. В зависимости от полноты истощения групповых агглюти­нинов можно получить монорецепторные сыворотки — сыво­ротки, имеющие антитела только к одному рецептору-антигену или адсорбированные, поливалентные, дающие реакции агглю­тинации с двумя — тремя родственными бактериями, имею­щими общий антиген, в отношении которого проводилась ад­сорбция.

Адсорбированные сыворотки применяют при идентифика­ции выделенных возбудителей в реакции агглютинации на стекле (пластинчатый метод).

Агглютинирующие сыворотки наиболее широко применя­ются при диагностике заболеваний, вызываемых бактериями семейства Enferobacferiaceae. Так, при идентификации эшерихий используются поливалентные и типовые ОК-сыворотки; при дифференциации сальмонелл — набор сывороток: агглю­тинирующая адсорбированная поливалентная сальмонеллезная О-сыворотка (групп А, В, С, Д, Е) — для определения принадлежности к роду Salmonella, при положительном ре­зультате — определяют отдельно с каждой сывороткой (входя­щей в смесь) серологическую группу и в заключение опреде­ляется серологический тип выделенного возбудителя с моно-рецепторными Н-сыворотками сальмонелл, входящих в данную группу.